9 research outputs found

    In operandi observation of dynamic annealing: a case study of boron in germanium nanowire devices

    Get PDF
    We report on the implantation of boron in individual, electrically contacted germanium nanowires with varying diameter and present a technique that monitors the electrical properties of a single device during implantation of ions. This method gives improved access to study the dynamic annealing ability of the nanowire at room temperature promoted by its quasi-one-dimensional confinement. Based on electrical data, we find that the dopant activation efficiency is nontrivially diameter dependent. As the diameter decreases, a transition from a pronounced dynamic-annealing to a radiation-damage dominated regime is observed

    DETERMINATION ANALYSIS OF TEMPERATURE REGIMES, FUNCTIONAL CHARACTERISTICS AND SLIDING CURVES OF A HYDRODYNAMIC CLUTCH

    Get PDF
    Analysis of output quality of power transmitters is possible in position when characteristics are determined earlier. This is the reason why we focused on determination of these characteristics for a concrete power hydro-transmitter. This means that the investigation task primarily consisted of determination of functional characteristics, defining of the sliding curves and temperature regimes of a concrete hydrodynamic clutch. Results of velocity and pressure field investigations in the working space of this clutch, obtained by use of the same test setup, are the basis for determination and analysis of the functional characteristics, sliding curves and temperature regimes. In this work we also analyzed function of the hydrodynamic transmitter in assembly with an internal combustion engine, as well as a process of acceleration and deceleration of a vehicle with this assembly in it

    First Report of Watermelon mosaic virus Infecting Melon and Watermelon in Bosnia and Herzegovina

    Get PDF
    Hereby the expansion of host range of Watermelon mosaic virus (WMV, Potyvirus, Potyviridae), found previously on zucchini in Bosnia and Herzegovina (3), to two new hosts is reported. Also, this is the first finding of WMV “emerging” (EM) isolate causing more severe symptoms in some cucurbits than “classic” (CL) isolates (1). During a July 2013 survey to determine the presence of WMV on cucurbits in Bosnia and Herzegovina, in the Kosijerovo locality (Laktaši Municipality, Bosnia and Herzegovina), virus-like symptoms were observed on 10% of plants. Severe mosaic, puckering, and leaf deformation as well as necrosis and leaf distortion were observed in a melon (Cucumis melo L.) crop, while mosaic, green vein banding, and leaf curling with reduced leaf size were observed in watermelon (Citrullus lanatus [Thunb.] Matsum and Nakai). Sampled melon and watermelon plants were tested for the presence of WMV with commercial double-antibody sandwich (DAS)-ELISA kit (Bioreba, AG, Reinach, Switzerland). Commercial positive and negative controls were included in each assay. Out of the 30 melon and 25 watermelon plants tested, 24 and 23 samples were positive for WMV, respectively, while no other cucurbit viruses were detected. The virus was mechanically transmitted from one of each of ELISA-positive melon (309-13) and watermelon (314-13) samples to five plants of each Cucurbita pepo ‘Ezra F1’, C. melo ‘Ananas,’ and C. lanatus ‘Creamson sweet’ using 0.01 M phosphate buffer (pH 7). Mild to severe mosaic and bubbling followed by leaf deformation were observed in all inoculated plants 10 to 14 days post-inoculation, regardless the isolate. Serological detection was verified with reverse transcription (RT)-PCR using the One-Step RT-PCR Kit (Qiagen, Hilden, Germany) with primers WMV 5′ and WMV 3′ (1), designed to amplify a 402- to 408-bp fragment overlapping the N-terminal part of the coat protein (CP) gene. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen). Total RNAs from the Serbian WMV oil pumpkin isolate (GenBank Accession No. JF325890) and RNA from healthy melon and watermelon plants were used as positive and negative controls, respectively. An amplicon of the expected size was produced from all serologically positive melon and watermelon plants, but not from healthy tissues. The RT-PCR products derived from isolates 309-13 and 314-13 were sequenced directly (KJ603311 and KM212956, respectively) and compared with WMV sequences available in GenBank. Sequence analysis revealed 91.5% nucleotide (nt) identity (94.6% amino acid [aa] identity) between the two WMV isolates. The melon WMV isolate shared the highest nt identity of 100% with four WMV isolates from Slovakia (GQ241712 to 13), Serbia (FJ325890), and Bosnia and Herzegovina (KF517099), while the sequence of isolate 314-13 had the highest nt identity with three Serbian isolates (JX262104 to 05 and JX262114) of 99.7% (99.2% aa identity). Phylogenetic analyses placed isolate 309-13 with CL isolates, while isolate 314-13 clustered with EM isolates (1,2). To our knowledge, this is the first report of WMV on melon and watermelon and the first report on EM isolates in Bosnia and Herzegovina. This could cause significant economic losses and become a limiting factor for cucurbit production with the potential of EM isolates to rapidly replace CL (2). References: (1) C. Desbiez et al. Arch. Virol. 152:775, 2007. (2) C. Desbiez et al. Virus Res. 152:775, 2009. (3) V. Trkulja et al. Plant Dis. 98:573, 2014. </jats:p

    Ex situ evaluation of forage yield components and forage yields in wild populations of yellow vetchling (Lathyrus aphaca L.) from Serbia

    No full text
    A small-plot trial was carried out in 2010 and 2011 at the Experimental Field of the Institute of Field and Vegetable Crops at Rimski Sancevi, including six wild populations of yellow vetchling (Lathyrus aphaca L.) collected at diverse locations at the mountain Fruska Gora in Serbia. The proportion of leaf varied from 0.54 in the populations LA 05 and LA 06 to 0.61 in the population LA 01.The population LA 01 had the highest two-year average forage yields, namely 16.1 t ha(-1) of green forage and and 3.1 t ha(-1) of forage dry matter, while the population LA 06 had the lowest two-year average forage yields, namely 10.0 t ha(-1) of green forage and 2.0 t ha(-1) of forage dry matter. Satisfactory forage yields in certain wild populations and a short growing season offer solid grounds for the improvement and utilisation of yellow vetch to a greater extent

    First Report of Tomato spotted wilt virus on Gloxinia in Bosnia and Herzegovina

    Get PDF
    In June and July 2012, symptoms resembling those caused by a tospovirus infection were observed on the greenhouse-grown gloxinia (Sinningia speciosa Benth. and Hook.) in the Lijevče polje, in the vicinity of Banja Luka (Bosnia and Herzegovina). Infected plants exhibited chlorotic ring spots and chlorotic and necrotic patterns followed by necrosis and distortion of leaves. Disease symptom incidence was estimated at 30% out of 400 inspected plants. Symptomatic leaves were collected and tested by double-antibody sandwich (DAS)-ELISA test using commercial polyclonal antisera (Bioreba AG, Reinach, Switzerland) for two of the most important tospoviruses in the greenhouse production of ornamentals: Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) (2). TSWV was detected serologically in 27 out of 30 tested gloxinia samples, and all were negative for INSV. Symptomatic leaves of five selected ELISA-positive gloxinia plants were separately ground in chilled 0.01 M phosphate buffer (pH 7) containing 0.1% w/v sodium sulphite and were mechanically inoculated on five plants of Petunia × hybrida. All inoculated plants produced typical symptoms of TSWV (1), necrotic spots on inoculated leaves in 2 to 5 days post-inoculation. For further confirmation of TSWV infection, total RNAs were extracted using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) from all 27 infected gloxinia plants and tested by reverse transcription (RT)-PCR assay. A 738-bp fragment of TSWV nucleocapsid (N) gene was amplified with One-Step RT-PCR Kit (Qiagen) using primer pairs TSWV CP-f and TSWV CP-r (4). Total RNAs from Serbian tobacco TSWV isolate (GenBank Accession No. GQ373173) and RNA extract from healthy gloxinia plants were used as positive and negative controls, respectively. Amplicons of the expected size were obtained from all 27 naturally infected gloxinia plants, while no amplification products were obtained from the healthy control. After the purification with QIAquick PCR Purification Kit (Qiagen), the RT-PCR product obtained from one selected isolate 160-12 was sequenced directly in both directions and submitted to GenBank (JX468079). Sequence analysis of the partial N gene, conducted by MEGA5 software (3), from isolate 160-12 showed the highest nucleotide identity of 99.7% (100% amino acid identity) with eight pepper isolates of TSWV from Spain (FR693229, FR693231, FR693152-153, FR693078, FR693081, FR693089, and FR693092). To our knowledge, this is the first report on the occurrence of TSWV in Bosnia and Herzegovina. The presence of this harmful pathogen into a new area could have a serious threat to intensive and increasing production of ornamentals and numerous other TSWV susceptible species in Bosnia and Herzegovina. The discovery of TSWV on gloxinia should prompt more surveys, thorough inspections, and subsequent testing of other TSWV susceptible plants cultivated in Bosnia and Herzegovina. References: (1) Anonymous. OEPP/EPPO Bull. 34:271, 2004. (2) Daughtrey et al. Plant Dis. 81:1220, 1997. (3) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (4) A. Vučurović et al. Eur. J. Plant Pathol. 133:935, 2012. </jats:p

    First Report of Impatiens necrotic spot virus on Begonia in Bosnia and Herzegovina.

    Get PDF
    Impatiens necrotic spot virus (INSV) and Tomato spotted wilt virus (TSWV) are the most serious viral pathogens in the production of ornamental plants in Europe and North America (1). During a survey for the presence of tospoviruses in July 2012, potted begonia hybrids (Begonia × tuberhybrida Voss) exhibiting foliar chlorotic rings and zonal spots accompanied by leaf necrosis and distortion, were observed in a greenhouse in the vicinity of Banja Luka (Bosnia and Herzegovina). Leaf samples collected from 12 symptomatic plants were analyzed for the presence of INSV and TSWV by commercial double-antibody sandwich (DAS)-ELISA kits (Bioreba AG, Reinach, Switzerland). Commercial positive and negative controls and extracts from healthy begonia leaves were included in each ELISA. INSV was detected serologically in all 12 begonia samples and all tested samples were negative for TSWV. Five healthy plants of each Petunia × hybrida and Nicotiana benthamiana were mechanically inoculated with sap from an ELISA-positive sample (157-12) using chilled 0.01 M phosphate buffer (pH 7) containing 0.1% sodium sulphite. Local necrotic lesions on P. × hybrida and systemic chlorotic mottling on N. benthamiana were observed on all inoculated plants 4 and 10 days post-inoculation, respectively. For further confirmation of INSV infection, total RNAs were extracted from all ELISA-positive begonia plants as well as mechanically inoculated N. benthamiana plants with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and used as template in reverse transcription (RT)-PCR. RT-PCR was performed with the OneStep RT-PCR Kit (Qiagen) using primer pair INSV-589 and TOS-R15 (3), specific to the partial INSV nucleocapsid (N) gene. Total RNA obtained from Serbian INSV isolate from a begonia (GenBank Accession No. HQ724289) and RNA extracts from healthy begonia plants were used as positive and negative controls, respectively. All naturally and mechanically infected plants as well as the positive control yielded an amplicon of the expected size (589 bp), while no amplification products were obtained from the healthy controls. The RT-PCR product derived from the isolate 157-12 was sequenced directly after purification with QIAquick PCR Purification Kit (Qiagen) and submitted to GenBank (KC494869). Pairwise comparison of the 157-12 isolate N sequence with other homologous sequences available in GenBank, conducted using MEGA5 software (2), revealed that begonia isolate from Bosnia and Herzegovina showed the highest nucleotide identity of 99.7% (100% amino acid identity) with the Chinese INSV isolate (FN400772) originating from Oncidium sp. To our knowledge, this is the first report of INSV on begonia in Bosnia and Herzegovina. Begonias are very popular and widely grown ornamentals in Bosnia and Herzegovina and the presence of a new and devastating pathogen could represent a serious threat for its production. Since begonia is commonly grown together with numerous ornamental plants susceptible to INSV, further investigations are needed in order to prevent spread of this potentially harmful pathogen to new hosts in Bosnia and Herzegovina. References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (3) H. Uga and S. Tsuda. Phytopathology 95:166, 2005. </jats:p

    Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering

    No full text
    Monophase silver-doped hydroxyapatite (AgxCa10-x(PO4)(6)(OH)(2); 0.002 lt = x lt = 0.04) nanoparticles were prepared using a neutralization method and investigated with respect to potential medical applications. This method consists of dissolving Ag2O in solution of H3PO4, and the slow addition to suspension of Ca(OH)(2) was applied for the purpose of homogenous distribution of silver ions. Characterization studies from XRD, TEM and FTIR spectra showed that obtained crystals are monophase hydroxyapatites and that particles of all samples are of nano size, with average length of 70nm and about 15-25nm in diameter. Antimicrobial studies have demonstrated that all silver-doped hydroxyapatite samples exhibit excellent antimicrobial activity in vitro against the following pathogens: Staphylococcus aureus, Escherichia coli and Candida albicans. The hydroxyapatite sample with the highest content of silver has shown the highest antimicrobial activity; killed all cells of E. coli and brought to more than 99% reduction in viable counts of S. aureus and C. albicans. The atomic force microscopic studies illustrate that silver-doped hydroxyapatite sample causes considerable morphological changes of microorganism cells which might be the cause of cells' death. Hemolysis ratios of the silver-doped hydroxyapatite samples were below 3%, indicating good blood compatibility and that are promising as biomaterials. Crown Copyright (C) 2010 Published by Elsevier B. V. All rights reserved
    corecore