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We report on the implantation of boron in individual, electrically contacted germanium nanowires

with varying diameter and present a technique that monitors the electrical properties of a single

device during implantation of ions. This method gives improved access to study the dynamic

annealing ability of the nanowire at room temperature promoted by its quasi-one-dimensional

confinement. Based on electrical data, we find that the dopant activation efficiency is nontrivially

diameter dependent. As the diameter decreases, a transition from a pronounced dynamic-annealing

to a radiation-damage dominated regime is observed. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922527]

Germanium nanowires (Ge NWs) represent a nanoscaled

semiconductor with the potential to replace and/or comple-

ment nanostructured silicon in future electronics while sus-

taining the progress of Moore’s law.1 Structurally stable Ge

NWs can be synthetically produced with high yield and good

control over the diameter size.2,3 In order to achieve success-

ful integration of Ge NWs into functional devices, means of

controlled doping have to be established and evaluated.

Although doping of NWs with shallow impurities such as bo-

ron and phosphorus can be realized during their synthesis,4,5

this approach can be flawed due to the lack of control over

the effective impurity levels, impurity segregation towards

the surface, and the incorporation of other, undesired species

into the NW body from the precursor material.5

Ion-beam implantation instead of in-situ synthesis

doping is a technique routinely used for modification of elec-

trical, optical, and magnetic properties in semiconductor

technology and offers wider opportunities for NW doping.6,7

Nevertheless, implantation doping of a semiconductor

material is rather complex involving two competing proc-

esses, namely, the formation of undesired damage in the irra-

diated host crystal and the self-activation of the selected

dopants. Self-activation originates from so-called dynamic

annealing,8 which involves migration of implanted ions onto

substitutional lattice sites. However, at high doses, ion

implantation results in significant amorphization of the semi-

conductor material, where the crystalline structure may be

partially restored via thermal annealing. Radiative damage

effects have been well studied in bulk semiconductors;9 how-

ever, it has been suggested in view of the ion implantation

theory that in NWs, the probability of dynamic annealing is

promoted due to the specific quasi-one-dimensional (1D)

confinement, resulting in slower dissipation of the ion

impact-energy.10,11

In this manuscript, we present experiments in which im-

plantation is carried out on an electrically side-contacted indi-

vidual nanowire.12 This has many advantages: (i) the

dynamic annealing can be tracked in operandi by the electri-

cal measurement upon ion implantation; (ii) the side contact

geometry allows for doping only the conduction channel,

while the buried contact is essentially unchanged; (iii) by the

use of an ion implanter, any element can, in principle, be

incorporated, in particular, the technologically relevant ele-

ment B, and further allowing for scalable doping of integrated

circuits with controlled dopant distributions and depth.

This technique complements the extensive studies in the

past years that targeted changes in microscopic structure

after ion implantation of semiconductor NWs with full

area13,14 and focused ion beam (FIB)15,16 techniques. These

elucidated ion-beam caused changes in morphology, with a

resulting high defect density.14,16 However, only a few stud-

ies can be found in literature concerning the modification of

the electrical properties of synthetic NWs upon ion implanta-

tion.17–19 In a recent work by Zeiner et al.,17 a marked

decrease in resistivity upon doping of device-integrated Ge

NWs with Ga from a FIB source was demonstrated without

thermal annealing. Other works on Si:Ga18 (FIB) and Ge:B

and Ge:P19 (full area) NWs opted for adding the electrical

contacts subsequent to the implantation. For the Si NWs

electrical activation required a post-annealing step, that is,

no dynamic annealing was observed.

Surprisingly, the correlation between the NW diameter

and dynamic annealing efficiency has not been studied to

date, despite the fact that the quasi-1D character of semicon-

ductor NWs is mandatory for dynamic annealing and has

huge impact on their electrical properties.20 This can

straightforwardly be studied with our in operandi technique.a)E-mail: vojislav.krstic@fau.de

0003-6951/2015/106(23)/233109/4/$30.00 VC 2015 AIP Publishing LLC106, 233109-1
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In our study, B ions were selected due to their reported

low diffusivity and high degree of electrical activation in

bulk Ge.21 The effects of irradiation with B on charge trans-

port are investigated by monitoring the change in NW and

contact resistivity with incrementally increasing fluencies in

the range of 1010–1015 cm�2 for NWs with diameter sizes of

29, 38, and 53 nm. The modification of microscopic structure

of Ge NWs implanted with a dose of 5� 1015 cm�2 is stud-

ied via SEM and TEM.

Ge NWs with diameter sizes ranging from a few ten to

100 nm (Fig. 1(a)) were synthesized via a vapour-liquid-solid

approach as described in Ref. 22. Our earlier studies12,22,23

indicated that the as-grown NWs were p-type doped with

carrier concentrations ranging from 3� 1017 cm�3 up to

1019 cm�3. This behaviour is characteristic for all non-

intentionally doped synthetically derived Ge NWs.24,25

Effective implantation of B at high fluencies was therefore

expected to overcome the pre-existent doping and decrease

the resistivity of the NWs for concentrations of activated

dopants higher than the initial carrier concentrations.

For sample preparation, the NW material was diluted in

isopropanol and dispersed on SiO2 substrates. Individual

NWs were contacted with 60 nm high Ag electrodes in four-

terminal device configuration (Figs. 1(b) and 1(c)) using

combined optical and electron-beam lithography.

Additionally, open circuit two electrode structures (Fig.

1(b)) were produced to verify whether irradiation of the sam-

ple may cause formation of a thin conducting layer at or

within the SiO2 substrate.

Ion implantation was carried out using a 350 kV Heavy

Ion Accelerator (HV Eng. Europa BV) at the pressure of

10�6 mbar. An energy of 20 keV was selected in order to

achieve a broad implantation peak at a mean depth of 47 nm

estimated by TRIM simulations,26,27 which was deemed

most suitable for Ge NWs within the available diameter

range. Since the TRIM data were calculated for bulk Ge, the

expected implantation profile and depth were taken as a

rough reference point for the experiment.

The NW longitudinal axis was aligned perpendicular to

the ion beam (Fig. 1(d)). The B ions were implanted with

incrementally increasing doses from 1011 up to 1015 cm�2.

After each implantation step, current-voltage characteristics

of the nanodevices (Id � Vsd) and the NW channels

(Id � V4T , four-terminal probing) were measured using an

Agilent E5270B source-measure unit. Subsequently, the NW

resistivity and contact-resistivity values were extracted from

the measurement at different B fluencies based on the geom-

etry of the devices.12,27 We note that true live monitoring of

the electrical properties during implantation is not the very

best choice, as the ion impact on the metallic electrodes

dominated the electrical signals, obscuring the dynamical

annealing. Therefore, we have opted for a repeated sequen-

tial protocol, in which a short implantation time interval

(few milliseconds) is immediately followed by a measure-

ment interval.

To test the potential short-circuiting of the SiO2 dielec-

tric, open circuit structures were probed before and after

sample irradiation using the same Vsd range as for the Ge

NW devices.27 The data show that there are no electrically

conducting paths created within the oxide layer, and there-

fore, the implantation conditions do not compromise the

electrical measurements on the individual NWs.

Fig. 2 shows representative data for B implantation of a

53 nm diameter Ge NW. The NW resistivity, qNW ,

(Fig. 2(a)), and contact-resistivity, qC (Fig. 2(b)) are plotted

as function of boron implant fluency. Based on the results of

electrical characterization, three main stages (I–III) of

implantation doping can be identified,28 depending on which

of the two competing processes — damage production or

dopant activation — dominates in a given stage, as denoted

in Fig. 2(a).

In the low-fluency range (1011–3� 1013 cm�2), denoted

as stage I, fluctuations in qNW and qC within one order of

magnitude are observed. In this dose range, defect formation

counteracts the effective doping of the material; therefore,

the fluctuations are associated with characteristic series of

defect formation (increasing) and damage removal (decreas-

ing resistivity) events.

At fluencies exceeding 3� 1013 cm�2 (stage II), a sharp

drop in qNW and qC by two to three orders of magnitude is

observed. This is characteristic of the dynamic annealing

dominating over damage by ion irradiation of the NW mate-

rial. The implant fluency at which the effective doping

becomes dominant over defect formation can be defined as

the doping threshold dose. The doping threshold dose mainly

depends on the initial carrier concentrations of the implanted

NWs. Therefore, the wide span of fluencies in stage I is a

consequence of high synthesis-caused pre-existent doping of

the NWs, as the equivalent concentration of activated B

acceptor levels is needed to exceed the initial acceptor den-

sity. With further increasing fluencies, the device signal was

eventually lost (stage III). Subsequent SEM imaging

revealed that the devices underwent significant electromigra-

tion damage in both the channels and the contact-interfa-

ces.27 The onset of electromigration is assigned to extensive

amorphization-related damage in the NWs at high boron

FIG. 1. SEM images of Ge NWs and associated nanodevices. (a) Bundles of

Au-seeded Ge NWs deposited on SiO2 surface, showing a wide diameter

distribution (20–100 nm) of NWs with high aspect ratios. (b) SEM image of

a four-terminal Ge NW device (top right) and an open-circuit two-terminal

structure (bottom left). (c) Higher magnification SEM image of a four-

terminal Ge NW device fabricated with 200 nm wide Au electrodes with

1 lm spacings. (d) Schematic diagram of the implantation procedure.

233109-2 Kole�snik-Gray et al. Appl. Phys. Lett. 106, 233109 (2015)
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fluencies. Presumably, the dynamic annealing becomes inef-

ficient at too high levels of strain-disorder. Therefore, the flu-

ency at which device signal was lost can be defined as the

amorphization dose.

The doping threshold and amorphisation doses were

found to exhibit a diameter dependence, as shown in

Fig. 3(a). Larger diameter NWs are more resilient to amorph-

ization damage. Also, the doping threshold dose increases

with diameter size.

The extent of NW and contact-resistivity change as

function of diameter size is illustrated in Figs. 3(b) and 3(c).

The ratio for qNW and qC at stages III and I (denoted by

corresponding superscripts) is plotted as function of NW di-

ameter. Clearly, the tendency for reduction of NW and

contact-resistivity after implantation becomes stronger with

increasing NW diameter size. Remarkably, for a 29 nm NW,

a weak increase in qNW is observed, indicating the domi-

nance of radiation-related damage over dynamic annealing

in the full dose range.

To elaborate further the diameter-dependent effect

observed during the electrical characterization, Ge NWs

were drop-cast on TEM grids and implanted with B to the

fluency of 5� 1014 cm�2, that is, beyond the amorphization

dose as found in the electrical results. Fig. 4 shows SEM and

FIG. 2. Electrical characterization of ion implantation doping in Ge NWs. Representative data for a 53 nm diameter NW show (a) the NW resistivity qNW and

(b) contact resistivity qC plotted as function of the nominal implanted dose. Three stages of characteristic defect formation and activation can be distinguished,

denoted in (a). At fluencies below 3� 1013 cm�2 (stage I), qNW and qC values fluctuate slowly within one order of magnitude since the density of activated B

dopants in this fluency range is smaller than the initial carrier concentration in the NWs. For higher doses (stage II), beyond a threshold doping dose, a distinct

drop in qNW and qC signifies the effective B doping of the NW. Finally, above 3� 1014 cm�2 (stage III), the device signal was lost due to Joule-heating medi-

ated electromigration resulting from an onset of amorphization of the NW.

FIG. 3. Diameter-dependence of ion

implantation doping effects in Ge

NWs. (a) Doping threshold and

amorphization dose plotted as function

of diameter size. Larger diameter NWs

are more resilient to implantation dam-

age. Dashed-dotted lines are guides to

the eye. (b) Relative change, qðIIIÞ=qðIÞ,
in NW resistivity and (c) contact-

resistivity as function of NW diameter,

comparing resistivities in stages III and

I of the implantation process. Insets in

(b) and (c) show the overall change (in

%) in the respective resistivities. The

results indicate that as the NW diame-

ter decreases, the probability of dopant

activation becomes smaller while

defect formation is more extensive.

Dashed-dotted lines are guides to the

eye.
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TEM images of NWs after implantation. SEM imaging

(Fig. 4(a)) revealed slight surface roughening and blistering

for NWs with diameters below 40 nm, whereas for larger di-

ameter NWs, there is no or very little appreciable tendency

for such change in the surface morphology. TEM imaging

revealed a more detailed structure of radiation-related dam-

age in the NW body, with clusters of B distributed all over

the NW thickness (Fig. 4(b)) and embedded within an

amorphized Ge matrix. Interestingly, the B clusters do not

seem to have segregated towards the NW surface (Figs. 4(c)

and 4(d)), which however was reported to be the case for

NWs doped during synthesis.5 This indicates a different

hetero-atom dynamics in Ge NWs depending on whether

hetero-atoms are introduced by post-implantation or in-situ
during synthesis. Furthermore, as was expected from the

electrical data, irradiation of thinner NWs caused the most

damage to the material, with significant amorphization, blis-

tering, and breakages of the NWs. In thicker NWs, the

implantation-related damage was less pronounced (Fig. 4(d))

with a large number of dislocation centres formed within the

weakly amorphized crystalline structure.27

Summarizing, the presented results provide insight into

the diameter-dependence of ion-implantation effectiveness

for device-integrated sub-100 nm diameter Ge NWs.

Electrical activation of B dopants at room temperature is

demonstrated by a marked decrease in NW and contact-

resistivity at high fluencies, likely promoted by the quasi-1D

confinement of the NWs. The observed diameter dependence

demonstrates that the resistivity reduction due to doping

decreases with shrinking NW diameter. In particular, once

the NW diameter falls below few tens of nm, the NW’s abil-

ity of dynamic annealing is reduced and the amorphization

probability of the NWs due to the impacting ions becomes

stronger. These findings have been enabled by application of

a powerful technique that is in operandi tracking of the elec-

trical properties during implantation. This very general meth-

odology, suited for any dopant, paves the way for a detailed

understanding of dynamic annealing in device-integrated

semiconductor NWs and associated electronic properties.
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ing faults associated with the incorporation of B clusters in a 82 nm

longitudinally twinned Ge NW.

233109-4 Kole�snik-Gray et al. Appl. Phys. Lett. 106, 233109 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

143.239.220.93 On: Fri, 12 Jun 2015 11:43:56

http://dx.doi.org/10.1007/s10876-006-0081-x
http://dx.doi.org/10.1063/1.1413495
http://dx.doi.org/10.1039/C3TC31736F
http://dx.doi.org/10.1063/1.2165089
http://dx.doi.org/10.1038/nnano.2009.51
http://dx.doi.org/10.1016/S0921-5093(98)00705-9
http://dx.doi.org/10.1002/anie.197804961
http://dx.doi.org/10.1063/1.365193
http://dx.doi.org/10.1007/BF00618760
http://dx.doi.org/10.1063/1.1536250
http://dx.doi.org/10.1039/c2nr30095h
http://dx.doi.org/10.1063/1.4821996
http://dx.doi.org/10.1016/j.mser.2010.07.002
http://dx.doi.org/10.1063/1.2912129
http://dx.doi.org/10.1155/2013/893060
http://dx.doi.org/10.1021/nl201105k
http://dx.doi.org/10.1021/nl080610d
http://dx.doi.org/10.1088/0957-4484/22/3/035201
http://dx.doi.org/10.1063/1.120473
http://dx.doi.org/10.1063/1.105257
http://dx.doi.org/10.1021/cm1012137
http://dx.doi.org/10.1021/cm200646e
http://dx.doi.org/10.1063/1.1755846
http://dx.doi.org/10.1063/1.1755846
http://dx.doi.org/10.1021/nl901548u
http://dx.doi.org/10.1063/1.4922527
http://dx.doi.org/10.1063/1.2126137

