458 research outputs found

    Ultra-coherent single photon source

    Get PDF
    We present a novel type of single photon source in solid state, based on the coherent laser light scattering by a single InAs quantum dot. We demonstrate that the coherence of the emitted single photons is tailored by the resonant excitation with a spectral linewidth below the radiative limit. Our ultra-coherent source opens the way for integrated quantum devices dedicated to the generation of single photons with high degrees of indistinguishability

    Mise en forme et élaboration par Spark plasma sintering de nanocéramiques à base de BaTiO3. Etude du processus de recuit, de la diffusion de l'oxygène et obtention de condensateurs céramiques aux propriétés diélectriques optimisées

    Get PDF
    Ces travaux ont pour objectif l'élaboration de condensateurs céramiques à base de titanate de baryum présentant des permittivités relatives colossales et de faibles pertes diélectriques. Des poudres de BaTiO3 de stœchiométrie (rapport Ba/Ti), taille de grains et structure contrôlées ont été synthétisées par coprécipitation suivi d'un traitement thermique de calcination. Deux sources de titane différentes ont été utilisées : TiCl3 (Ti3+) et TiOCl2 (Ti4+). Des nanocéramiques BaTiO3-d densifiées à plus de 98% ont été élaborées par Spark Plasma Sintering (SPS). Pour la première fois, les paramètres de recuit après frittage SPS ont été étudiés et optimisés afin d'obtenir des matériaux présentant des propriétés électriques optimales. Le résultat le plus significatif, une permittivité relative colossale de 500 000 associée à des pertes diélectriques de 5% (300 K, 1 kHz), est obtenu pour une céramique BaTiO3-d comportant un excès de titane (Ba/Ti=0,95) après recuit de 15 minutes sous air à 850°C suivi d'une trempe. Une étude de la diffusion de l'oxygène dans ces nanocéramiques a été menée par le biais d'un échange isotopique 18O2/16O2 suivi d'une caractérisation par Spectroscopie des ions Secondaires (SIMS) et a mis en évidence un phénomène de surface et l'effet bloquant des joints de grain à la diffusion de l'oxygène. Des caractérisations électriques en température et l'utilisation des modèles diélectriques physiques ont permis d'identifier les mécanismes de polarisation responsables des permittivités relatives colossales des nanocéramiques et de déterminer leurs contributions respectives : polarisation par hopping (65%), polarisation interfaciale (20%) et polarisation d'électrode (15%).The purpose of this work is to elaborate barium titanate ceramics capacitors showing colossal relative permittivities and low dielectric losses. BaTiO3 powders with controlled stoichiometry (Ba/Ti ratio), grain size and structure have been synthesized by a coprecipitation reaction followed by a thermal treatment. Two different titanium sources were used, i.e. TiCl3 (Ti3+) and TiOCl2 (Ti4+). BaTiO3-d nanoceramics densified over 98% have been elaborated by Spark Plasma Sintering (SPS). For the first time, the annealing parameters after SPS sintering were studied and optimized in order to obtain materials with optimal electrical properties, i.e. the highest (relative permittivity / dielectric losses) ratio. The most significant result, a colossal relative permittivity of 500 000 associated with dielectric losses of 5% (300 K, 1 kHz), is reached for a BaTiO3-d ceramic containing a titanium excess (Ba/Ti=0.95) after a reoxidation time of 15 minutes in air followed by quenching. A study of the oxygen diffusion in these nanoceramics was conducted through an 18O2/16O2 isotopic exchange followed by a characterization by Secondary Ion Mass Spectroscopy (SIMS) and showed a surface phenomenon and the grain boundaries blocking effect against oxygen diffusion. Electrical characterizations in temperature and the use of physical dielectric models enabled to identify the polarization mechanisms responsible for the colossal relative permittivities in the nanoceramics and to determine their respective contributions : hopping polarization (65%), interfacial polarization (20%) and electrode polarization (15%)

    Exploiting one-dimensional exciton-phonon coupling for tunable and efficient single-photon generation with a carbon nanotube

    Full text link
    Condensed-matter emitters offer enriched cavity quantum electrodynamical effects due to the coupling to external degrees of freedom. In the case of carbon nanotubes a very peculiar coupling between localized excitons and the one-dimensional acoustic phonon modes can be achieved, which gives rise to pronounced phonon wings in the luminescence spectrum. By coupling an individual nanotube to a tunable optical micro-cavity, we show that this peculiar exciton-phonon coupling is a valuable resource to enlarge the tuning range of the single-photon source while keeping an excellent exciton-photon coupling efficiency and spectral purity. Using the unique flexibility of our scanning fiber cavity, we are able to measure the efficiency spectrum of the very same nanotube in the Purcell regime for several mode volumes. Whereas this efficiency spectrum looks very much like the free-space luminescence spectrum when the Purcell factor is small (large mode volume), we show that the deformation of this spectrum at lower mode volumes can be traced back to the strength of the exciton-photon coupling. It shows an enhanced efficiency on the red wing that arises from the asymmetry of the incoherent energy exchange processes between the exciton and the cavity. This allows us to obtain a tuning range up to several hundred times the spectral width of the source

    Evolution of seismic signals and slip patterns along subduction zones: insights from a friction lab scale experiment.

    Get PDF
    International audienceContinuous GPS and broadband seismic monitoring have revealed a variety of disparate slip patterns especially in shallow dipping subduction zones, among which regular earthquakes, slow slip events and silent quakes1,2. Slow slip events are sometimes accompanied by Non Volcanic Tremors (NVT), which origin remains unclear3, either related to fluid migration or to friction. The present understanding of the whole menagerie of slip patterns is based upon numerical simulations imposing ad hoc values of the rate and state parameters a and b4-6 derived from the temperature dependence of a and b of a wet granite gouge7. Here we investigate the influence of the cumulative slip on the frictional and acoustic patterns of a lab scale subduction zone. Shallow loud earthquakes (stick-slip events), medium depth slow, deeper silent quakes (smooth sliding oscillations) and deepest steady-state creep (continuous sliding) are reproduced by the ageing of contact interface with cumulative displacement8. The Acoustic Emission evolves with cumulative displacement and interface ageing, following a trend from strong impulsive events, similar to earthquake seismic signals, to a collection of smaller amplitude and longer duration signals, similar to Non Volcanic Tremors. NVT emerge as the recollection of the local unstable behaviour of the contact interface globally evolving towards the stable sliding regime

    The 2000 Tottori (Japan) earthquake: triggering of the largest aftershock and constraints on Dc.

    Get PDF
    The goal of this study is to investigate the effect of the static and dynamic stress changes on the triggering of faults under slip-dependent friction law. We specifically focus on the 2000 Western Tottori (Japan) earthquake and on the triggering of its largest aftershock. To this end we compute the dynamic and static stress changes caused by the 2000 Western Tottori (Japan) earthquake for which a good knowledge of the rupture history and aftershock sequence exists. We compute the coseismic stress evolution caused by the mainshock fault, on the fault plane of the largest aftershock located 20 km SW of the mainshock. The static stress changes cannot explain the occurrence of the largest aftershock, located in a stress shadow whatever the friction coefficient that we use. Hence we propose that dynamic stresses have promoted the triggering of the largest aftershock. Using the discrete wavenumber and the reflectivity methods we compute the complete time-dependent coulomb failure function CFF(t). We investigate the influence of the adopted coefficient of friction ÎĽ, the depth and the location of the hypocenter on the shape of the CFF(t). Finally, using a non-linear slip dependent friction law with a stability/instability transition, we constrain the frictional properties of the largest aftershock fault plane knowing the state of stress on the fault and the time delay of 48 hours. We propose that Dc must be greater than 0.3 m

    Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement

    Get PDF
    At low temperature the photoluminescence of single-wall carbon nanotubes show a large variety of spectral profiles ranging from ultra narrow lines in suspended nanotubes to broad and asymmetrical line-shapes that puzzle the current interpretation in terms of exciton-phonon coupling. Here, we present a complete set of photoluminescence profiles in matrix embedded nanotubes including unprecedented narrow emission lines. We demonstrate that the diversity of the low-temperature luminescence profiles in nanotubes originates in tiny modifications of their low-energy acoustic phonon modes. When low energy modes are locally suppressed, a sharp photoluminescence line as narrow as 0.7 meV is restored. Furthermore, multi-peak luminescence profiles with specific temperature dependence show the presence of confined phonon modes
    • …
    corecore