12 research outputs found

    G-CORE a core for future graph query languages

    Get PDF
    We report on a community effort between industry and academia to shape the future of graph query languages. We argue that existing graph database management systems should consider supporting a query language with two key characteristics. First, it should be composable, meaning, that graphs are the input and the output of queries. Second, the graph query language should treat paths as first-class citizens. Our result is G-CORE, a powerful graph query language design that fulfills these goals, and strikes a careful balance between path query expressivity and evaluation complexity

    G-CORE a core for future graph query languages

    Get PDF
    We report on a community effort between industry and academia to shape the future of graph query languages. We argue that existing graph database management systems should consider supporting a query language with two key characteristics. First, it should be composable, meaning, that graphs are the input and the output of queries. Second, the graph query language should treat paths as first-class citizens. Our result is G-CORE, a powerful graph query language design that fulfills these goals, and strikes a careful balance between path query expressivity and evaluation complexity

    G-CORE a core for future graph query languages

    Get PDF
    We report on a community effort between industry and academia to shape the future of graph query languages. We argue that existing graph database management systems should consider supporting a query language with two key characteristics. First, it should be composable, meaning, that graphs are the input and the output of queries. Second, the graph query language should treat paths as first-class citizens. Our result is G-CORE, a powerful graph query language design that fulfills these goals, and strikes a careful balance between path query expressivity and evaluation complexity

    Querying graphs

    No full text

    Querying Graphs

    No full text
    International audienceGraph data modeling and querying arises in many practical application domains such as social and biological networks where the primary focus is on concepts and their relationships and the rich patterns in these complex webs of interconnectivity. In this book, we present a concise unified view on the basic challenges which arise over the complete life cycle of formulating and processing queries on graph databases. To that purpose, we present all major concepts relevant to this life cycle, formulated in terms of a common and unifying ground: the property graph data model—the pre-dominant data model adopted by modern graph database systems.We aim especially to give a coherent and in-depth perspective on current graph querying and an outlook for future developments. Our presentation is self-contained, covering the relevant topics from: graph data models, graph query languages and graph query specification, graph constraints, and graph query processing. We conclude by indicating major open research challenges towards the next generation of graph data management systems

    Synthesis and characterization of a sulfur containing hydroxysodalite without sulfur radicals

    Full text link
    [EN] A new sulfur containing hydroxy sodalite (S-SOD) of high thermal and hydrothermal stability was synthesized and characterized. XRD measurements showed some differences to normal hydroxy sodalite (H-SOD). But the S-SOD is also quite different from natural sulfur containing sodalites like ultramarine blue. IR- and RAMAN-spectroscopy measurements detected no sulfur radicals in the structure of S-SOD, which was already assumed because of the colorless powder of S-SOD. Si-29-, Al-27- and Na-23-MAS-NMR measurements were conducted to determine the order of the structure and the type of incorporation of the sulfur into the sodalite structure. The sulfur is most likely coordinated statistically on every possible oxygen position in the structure. The pore size of the S-SOD was determined by positron annihilation measurements and is suitable for hydrogen separations. (C) 2015 Elsevier Inc. All rights reserved.Günther, C.; Richter, H.; Voigt, I.; Michaelis, A.; Tzscheutschler, H.; Krause-Rehberg, R.; Serra Alfaro, JM. (2015). Synthesis and characterization of a sulfur containing hydroxysodalite without sulfur radicals. Microporous and Mesoporous Materials. 214:1-7. doi:10.1016/j.micromeso.2015.04.024S1721

    Literaturverzeichnis

    No full text

    Overview of the MOSAiC expedition:atmosphere

    No full text
    Abstract With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic

    Involvement of insulin-like growth factor-I in inner ear organogenesis and regeneration

    No full text
    The verterbrate inner ear is an excellent model system to study signalling mechanisms in embryonic development. During the last years, insulin-like growth factor-I (IGF-I) has attracted attention in relation to the regulation of inner ear ontogenesis. IGF-I and its high-affinity tyrosine-kinase receptor are expressed during early stages of inner ear development. IGF-I is a powerful mitogen for the otic vesicle, where it stimulates cell-division and mitogenic signalling cascades. Later in development, IGF-I also promotes survival and neurogenesis of the otic neurones in the cochleovestibular ganglion (CVG). The actions of IGF-I are associated with the generation of lipidic messengers and the activation of Raf kinase, which results in the rapid induction of the expression of the proliferative celt nuclear antigen (PCNA) and the nuclear proto-oncogenes c- fos and c-jun. Regulation of organogenesis involves a dynamic balance of the mechanisms regulating cell division, differentiation and death. A model is proposed where this balance is the consequence of the action of IGF-I and NGF, which converge in Raf activation or suppression. The combinatorial expression of Jun and Fos family members in particular domains of the otic vesicle would be the final result of such cascade. Some of these mechanisms may be also implicated in otic regeneration.Peer Reviewe
    corecore