4,467 research outputs found

    Chemical effects of photonuclear reactions in the propyl bromides

    Get PDF
    When nuclear reactions occur in atoms in molecules chemical changes follow as a result of the recoil of the product atoms. The nature of these chemical changes has been studied intensively for a number of systems but in most cases the magnitude of the recoil energy has been about the same. In the present studies use was made of a much greater recoil energy than that normally used. The reaction Br(γ,η)Br* gives a recoil bromine2 atom with an energy of the order 105ev, compared to 102ev for the product of the Br(η,γ)Br* reaction which is usually used

    The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation

    Get PDF
    Background— The molecular mechanism of increased background inward rectifier current (IK1) in atrial fibrillation (AF) is not fully understood. We tested whether constitutively active acetylcholine (ACh)-activated IK,ACh contributes to enhanced basal conductance in chronic AF (cAF). Methods and Results— Whole-cell and single-channel currents were measured with standard voltage-clamp techniques in atrial myocytes from patients with sinus rhythm (SR) and cAF. The selective IK,ACh blocker tertiapin was used for inhibition of IK,ACh. Whole-cell basal current was larger in cAF than in SR, whereas carbachol (CCh)-activated IK,ACh was lower in cAF than in SR. Tertiapin (0.1 to 100 nmol/L) reduced IK,ACh in a concentration-dependent manner with greater potency in cAF than in SR (−logIC50: 9.1 versus 8.2; P<0.05). Basal current contained a tertiapin-sensitive component that was larger in cAF than in SR (tertiapin [10 nmol/L]-sensitive current at −100 mV: cAF, −6.7±1.2 pA/pF, n=16/5 [myocytes/patients] versus SR, −1.7±0.5 pA/pF, n=24/8), suggesting contribution of constitutively active IK,ACh to basal current. In single-channel recordings, constitutively active IK,ACh was prominent in cAF but not in SR (channel open probability: cAF, 5.4±0.7%, n=19/9 versus SR, 0.1±0.05%, n=16/9; P<0.05). Moreover, IK1 channel open probability was higher in cAF than in SR (13.4±0.4%, n=19/9 versus 11.4±0.7%, n=16/9; P<0.05) without changes in other channel characteristics. Conclusions— Our results demonstrate that larger basal inward rectifier K+ current in cAF consists of increased IK1 activity and constitutively active IK,ACh. Blockade of IK,ACh may represent a new therapeutic target in AF

    Experimental demonstration of fractional orbital angular momentum entanglement of two photons

    Get PDF
    The singular nature of a non-integer spiral phase plate allows easy manipulation of spatial degrees of freedom of photon states. Using two such devices, we have observed very high dimensional (D > 3700) spatial entanglement of twin photons generated by spontaneous parametric down-conversion.Comment: submitted to Phys. Rev. Let

    Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks

    Get PDF
    Genetic circuits require many regulatory parts in order to implement signal processing or execute algorithms in cells. A potentially scalable approach is to use dCas9, which employs small guide RNAs (sgRNAs) to repress genetic loci via the programmability of RNA:DNA base pairing. To this end, we use dCas9 and designed sgRNAs to build transcriptional logic gates and connect them to perform computation in living cells. We constructed a set of NOT gates by designing five synthetic Escherichia coli σ[subscript 70] promoters that are repressed by corresponding sgRNAs, and these interactions do not exhibit crosstalk between each other. These sgRNAs exhibit high on‐target repression (56‐ to 440‐fold) and negligible off‐target interactions (< 1.3‐fold). These gates were connected to build larger circuits, including the Boolean‐complete NOR gate and a 3‐gate circuit consisting of four layered sgRNAs. The synthetic circuits were connected to the native E. coli regulatory network by designing output sgRNAs to target an E. coli transcription factor (malT). This converts the output of a synthetic circuit to a switch in cellular phenotype (sugar utilization, chemotaxis, phage resistance).United States. Defense Advanced Research Projects Agency (CLIO N66001‐12‐C‐4016)National Institutes of Health (U.S.) (GM095765)National Institute of General Medical Sciences (U.S.) (Grant P50 GMO98792)Synthetic Biology Engineering Research Center (EEC0540879)United States. Defense Advanced Research Projects Agency (Ginkgo BioWorks. CLIO N66001‐12‐C‐4018)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014‐13‐1‐0074)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Boston University. Award 4500000552)United States. Air Force Office of Scientific Research (FA9550‐11‐C‐0028)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a

    Ultrasonic studies of the magnetic phase transition in MnSi

    Full text link
    Measurements of the sound velocities in a single crystal of MnSi were performed in the temperature range 4-150 K. Elastic constants, controlling propagation of longitudinal waves reveal significant softening at a temperature of about 29.6 K and small discontinuities at \sim28.8 K, which corresponds to the magnetic phase transition in MnSi. In contrast the shear elastic moduli do not show any softening at all, reacting only to the small volume deformation caused by the magneto-volume effect. The current ultrasonic study exposes an important fact that the magnetic phase transition in MnSi, occurring at 28.8 K, is just a minor feature of the global transformation marked by the rounded maxima or minima of heat capacity, thermal expansion coefficient, sound velocities and absorption, and the temperature derivative of resistivity.Comment: 4 pages, 4 figure

    The J_1-J_2 antiferromagnet with Dzyaloshinskii-Moriya interaction on the square lattice: An exact diagonalization study

    Full text link
    We examine the influence of an anisotropic interaction term of Dzyaloshinskii-Moriya (DM) type on the groundstate ordering of the J_1-J_2 spin-1/2-Heisenberg antiferromagnet on the square lattice. For the DM term we consider several symmetries corresponding to different crystal structures. For the pure J_1-J_2 model there are strong indications for a quantum spin liquid in the region of 0.4 < J_2/J_1 < 0.65. We find that a DM interaction influences the breakdown of the conventional antiferromagnetic order by i) shifting the spin liquid region, ii) changing the isotropic character of the groundstate towards anisotropic correlations and iii) creating for certain symmetries a net ferromagnetic moment.Comment: 7 pages, RevTeX, 6 ps-figures, to appear in J. Phys.: Cond. Ma

    Rotational modes in molecular magnets with antiferromagnetic Heisenberg exchange

    Full text link
    In an effort to understand the low temperature behavior of recently synthesized molecular magnets we present numerical evidence for the existence of a rotational band in systems of quantum spins interacting with nearest-neighbor antiferromagnetic Heisenberg exchange. While this result has previously been noted for ring arrays with an even number of spin sites, we find that it also applies for rings with an odd number of sites as well as for all of the polytope configurations we have investigated (tetrahedron, cube, octahedron, icosahedron, triangular prism, and axially truncated icosahedron). It is demonstrated how the rotational band levels can in many cases be accurately predicted using the underlying sublattice structure of the spin array. We illustrate how the characteristics of the rotational band can provide valuable estimates for the low temperature magnetic susceptibility.Comment: 14 pages, 7 figures, to be published in Phys. Rev.

    Design, construction and commissioning of the Braunschweig Icing Wind Tunnel

    Get PDF
    Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m  ×  0.5 m with peak velocities of up to 40 m s−1. The static air temperature ranges from −25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m−3 can be reproduced. The unique aspect of this facility is the combination of an icing tunnel with a cloud chamber system for making ice particles. These ice particles are more realistic in shape and density than those usually used for mixed phase and ice crystal icing experiments. Ice water contents up to 20 g m−3 can be generated. We further show how current state-of-the-art measurement techniques for particle sizing are performed on ice particles. The data are compared to those of in-flight measurements in mesoscale convective cloud systems in tropical regions. Finally, some applications of the icing wind tunnel are presented
    corecore