1,998 research outputs found
Photochemical Reductive trans-Elimination from trans-Diacidotetracyanoplatinate(IV) Complexes
Abstract
Upon CT excitation the complex ions trans-[Pt(CN)4N3X]2- and trans-[Pt(CN)4X2]2- (X = Cl and Br) undergo a reductive trans-elimination with formation of [Pt(CN)4]2- and two ligand radicals in the photoprimary step. The formation of a Pt(III) intermediate is not observed. Due to the stability of [Pt(CN)4]2-, recombination reactions regenerating the starting complex are efficient if the ligand radicals are not scavenged. For the azide complexes the high quantum yields for the production of [Pt(CN)4]2- are explained by the instability of azide radicals. For trans-[Pt(CN)4X2]2-, the recombination is efficient in aqueous solution, while in ethanol the halogen atoms are scavenged by hydrogen abstraction. The sequence of steps following CT excitation can be explained by a potential energy diagram.</jats:p
Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis
Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations
Metagenome skimming of insect specimen pools: potential for comparative genomics
Metagenomic analyses are challenging in metazoans, but high-copy number and repeat regions can be assembled from lowcoverage
sequencing by “genome skimming,” which is applied here as a new way of characterizing metagenomes obtained in an ecological or taxonomic context. Illumina shotgun sequencing on two pools of Coleoptera (beetles) of approximately 200 species each were assembled into tens of thousands of scaffolds. Repeated low-coverage sequencing recovered similar scaffold sets consistently, although approximately 70% of scaffolds could not be identified against existing genome databases. Identifiable scaffolds included mitochondrial DNA, conserved sequences with hits to expressed sequence tag and protein databases, and knownrepeatelementsof high and low complexity, includingnumerous copies ofrRNAandhistone genes.Assemblies of histones captured a diversity of gene order and primary sequence in Coleoptera. Scaffolds with similarity to multiple sites in available coleopteran genome sequences for Dendroctonus and Tribolium revealed high specificity of scaffolds to either of these genomes,
in particular for high-copy number repeats. Numerous “clusters” of scaffolds mapped to the same genomic site revealed intraand/or intergenomic variation within a metagenome pool. In addition to effect of taxonomic composition of the metagenomes, the number of mapped scaffolds also revealed structural differences between the two reference genomes, although the significance of this striking finding remains unclear. Finally, apparently exogenous sequences were recovered, including potential food plants, fungal pathogens, and bacterial symbionts. The “metagenome skimming” approach is useful for capturing the genomic diversity of poorly studied, species-rich lineages and opens new prospects in environmental genomic
Correlative Microscopy of Morphology and Luminescence of Cu porphyrin aggregates
Transfer of energy and information through molecule aggregates requires as
one important building block anisotropic, cable-like structures. Knowledge on
the spatial correlation of luminescence and morphology represents a
prerequisite in the understanding of internal processes and will be important
for architecting suitable landscapes. In this context we study the morphology,
fluorescence and phosphorescence of molecule aggregate structures on surfaces
in a spatially correlative way. We consider as two morphologies, lengthy
strands and isotropic islands. It turns out that phosphorescence is quite
strong compared to fluorescence and the spatial variation of the observed
intensities is largely in line with the amount of dye. However in proportion,
the strands exhibit more fluorescence than the isotropic islands suggesting
weaker non-radiative channels. The ratio fluorescence to phosphorescence
appears to be correlated with the degree of aggregation or internal order. The
heights at which luminescence saturates is explained in the context of
attenuation and emission multireflection, inside the dye. This is supported by
correlative photoemission electron microscopy which is more sensitive to the
surface region. The lengthy structures exhibit a pronounced polarization
dependence of the luminescence with a relative dichroism up to about 60%,
revealing substantial perpendicular orientation preference of the molecules
with respect to the substrate and parallel with respect to the strands
Millimeter wave satellite concepts. Volume 1: Executive summary
The objectives of the program were: (1) development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and (2) testing of this methodology with user applications and services. The scope of the program included the entire communications network, both ground and space subsystems. The reports include: (1) cost, weight, and performance models for the subsystems, (2) conceptual design for point-to-point and broadcast communications satellites, (3) analytic relationships between subsystem parameters and an overall link performance, (4) baseline conceptual systems, (5) sensitivity studies, (6) model adjustment analyses, (7) identification of critical technologies and their risks, (8) brief R&D program scenarios for the technologies judged to be moderate or extensive risks
Calculation of coercivity of magnetic nanostructures at finite temperatures
We report a finite temperature micromagnetic method (FTM) that allows for the
calculation of the coercive field of arbitrary shaped magnetic nanostructures
at time scales of nanoseconds to years. Instead of directly solving the
Landau-Lifshitz-Gilbert equation, the coercive field is obtained without any
free parameter by solving a non linear equation, which arises from the
transition state theory. The method is applicable to magnetic structures where
coercivity is determined by one thermally activated reversal or nucleation
process. The method shows excellent agreement with experimentally obtained
coercive fields of magnetic nanostructures and provides a deeper understanding
of the mechanism of coercivity.Comment: submitted to Phys. Rev.
An X-ray Mini-survey of Nearby Edge-on Starburst Galaxies II. The Question of Metal Abundance
(abbreviated) We have undertaken an X-ray survey of a far-infrared flux
limited sample of seven nearby edge-on starburst galaxies. Here, we examine the
two X-ray-brightest sample members NGC 253 and M 82 in a self-consistent
manner, taking account of the spatial distribution of the X-ray emission in
choosing our spectral models. There is significant X-ray absorption in the disk
of NGC 253. When this is accounted for we find that multi-temperature thermal
plasma models with significant underlying soft X-ray absorption are more
consistent with the imaging data than single-temperature models with highly
subsolar abundances or models with minimal absorption and non-equilibrium
thermal ionization conditions. Our models do not require absolute abundances
that are inconsistent with solar values or unusually supersolar ratios of the
alpha-burning elements with respect to Fe (as claimed previously). We conclude
that with current data, the technique of measuring abundances in starburst
galaxies via X-ray spectral modeling is highly uncertain.
Based on the point-like nature of much of the X-ray emission in the PSPC
hard-band image of NGC 253, we suggest that a significant fraction of the
``extended'' X-ray emission in the 3-10 keV band seen along the disk of the
galaxy with ASCA and BeppoSAX (Cappi et al.) is comprised of discrete sources
in the disk, as opposed to purely diffuse, hot gas. This could explain the low
Fe abundances of ~1/4 solar derived for pure thermal models.Comment: (accepted for publication in the Astrophysical Journal
[18F]-Fluorodeoxyglucose-positron emission tomography in rats with prolonged cocaine self-administration suggests potential brain biomarkers for addictive behavior
The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naĂŻve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naĂŻve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior
Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects
Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved
- …