227 research outputs found

    An Enantiodivergent Synthesis of C\u3csup\u3eα\u3c/sup\u3e-Methyl Nipecotic Acid Analogues From δ-Lactam Derivatives Obtained Through a Highly Stereoselective Cyclization Strategy

    Get PDF
    A stereoselective and enantiodivergent strategy for the construction of δ-lactams is described. The strategy utilizes chiral malonic esters prepared from enantiomerically enriched mono esters of disubstituted malonic acid. A cyclization occurs with the selective displacement of a substituted benzyl alcohol as the leaving group. The resulting δ-lactams are then converted into nipecotic acid analogues using straightforward transformations. The resulting nipecotic acid analogues proved capable organocatalysts in Mannich reactions

    Consortium for the Study of Pregnancy Treatments (Co-OPT): An international birth cohort to study the effects of antenatal corticosteroids

    Get PDF
    BACKGROUND: Antenatal corticosteroids (ACS) are widely prescribed to improve outcomes following preterm birth. Significant knowledge gaps surround their safety, long-term effects, optimal timing and dosage. Almost half of women given ACS give birth outside the "therapeutic window" and have not delivered over 7 days later. Overtreatment with ACS is a concern, as evidence accumulates of risks of unnecessary ACS exposure. METHODS: The Consortium for the Study of Pregnancy Treatments (Co-OPT) was established to address research questions surrounding safety of medications in pregnancy. We created an international birth cohort containing information on ACS exposure and pregnancy and neonatal outcomes by combining data from four national/provincial birth registers and one hospital database, and follow-up through linked population-level data from death registers and electronic health records. RESULTS AND DISCUSSION: The Co-OPT ACS cohort contains 2.28 million pregnancies and babies, born in Finland, Iceland, Israel, Canada and Scotland, between 1990 and 2019. Births from 22 to 45 weeks' gestation were included; 92.9% were at term (≥ 37 completed weeks). 3.6% of babies were exposed to ACS (67.0% and 77.9% of singleton and multiple births before 34 weeks, respectively). Rates of ACS exposure increased across the study period. Of all ACS-exposed babies, 26.8% were born at term. Longitudinal childhood data were available for 1.64 million live births. Follow-up includes diagnoses of a range of physical and mental disorders from the Finnish Hospital Register, diagnoses of mental, behavioural, and neurodevelopmental disorders from the Icelandic Patient Registers, and preschool reviews from the Scottish Child Health Surveillance Programme. The Co-OPT ACS cohort is the largest international birth cohort to date with data on ACS exposure and maternal, perinatal and childhood outcomes. Its large scale will enable assessment of important rare outcomes such as perinatal mortality, and comprehensive evaluation of the short- and long-term safety and efficacy of ACS

    Consortium for the Study of Pregnancy Treatments (Co-OPT) : An international birth cohort to study the effects of antenatal corticosteroids

    Get PDF
    Acknowledgments We are grateful to the Co-OPT collaborators from Finland, Iceland, Israel, Nova Scotia, and Scotland, who have provided high-quality patient data, without which the Co-OPT ACS cohort would not have been possible. We acknowledge Public Health Scotland for providing us with a secure data analytical platform in which to undertake this research and are particularly grateful to Anna Schneider who has been the data controller for this project. Co-OPT collaborators: Karel Allegaert (Belgium), Jasper Been (Netherlands), David Burgner (Australia), Sohinee Bhattacharya (UK), Kate Duhig (UK), Kristjana Einarsdóttir (Iceland), John Fahey (Canada), Lani Florian (UK), Abigail Fraser (UK), Mika Gissler (Finland), Cynthia Gyamfi-Bannerman (USA), Bo Jacobsson (Sweden), Eyal Krispin (Israel), Stefan Kuhle (Canada), Marius Lahti-Pulkkinen (Finland), Jessica Miller (Australia), Ben Mol (Australia), Sarah Murray (UK), Jane Norman (UK), Lars Henning Pedersen (Denmark), Richard Riley (UK), Devender Roberts (UK), Ewoud Schuit (Netherlands), Aziz Sheikh (UK), Ting Shi (UK), Joshua Vogel (Australia), Rachael Wood (UK), John Wright (UK), Helga Zoega (Australia). Funding Information: The Co-OPT ACS study is funded through a Wellcome Trust Clinical Career Development Fellowship grant (Funding Reference number 209560/Z/17) awarded to Sarah J Stock. The funders had no role in study design, data collection, data analysis, decision to publish, or preparation of the manuscript. The Sponsor of the study is the University of Edinburgh (www.ed.ac. uk), Sponsor reference AC19119. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia

    Get PDF
    Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5×10−8). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15×10−4). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities

    The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance

    Get PDF
    In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.</p

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Genetic errors of immunity distinguish pediatric non-malignant lymphoproliferative disorders

    Get PDF
    Background Pediatric non-malignant lymphoproliferative disorders (PLPD) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. Objective The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. Methods PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant EBV infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing (WES). Results WES identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, p = 0.03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs. 90%; p = 0.002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. Conclusion PLPD therefore defines children with high risk for mortality, and WES informs clinical risks and therapeutic opportunities for this diagnosis

    An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent
    corecore