1,466 research outputs found

    Dissociation between Mature Phenotype and Impaired Transmigration in Dendritic Cells from Heparanase-Deficient Mice

    Get PDF
    To reach the lymphatics, migrating dendritic cells (DCs) need to interact with the extracellular matrix (ECM). Heparanase, a mammalian endo-β-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and ECM. The role of heparanase in the physiology of bone marrow-derived DCs was studied in mutant heparanase knock-out (Hpse-KO) mice. Immature DCs from Hpse-KO mice exhibited a more mature phenotype; however their transmigration was significantly delayed, but not completely abolished, most probably due to the observed upregulation of MMP-14 and CCR7. Despite their mature phenotype, uptake of beads was comparable and uptake of apoptotic cells was more efficient in DCs from Hpse-KO mice. Heparanase is an important enzyme for DC transmigration. Together with CCR7 and its ligands, and probably MMP-14, heparanase controls DC trafficking

    Involvement of heparanase in the pathogenesis of acute kidney injury: Nephroprotective effect of PG545

    Get PDF
    Despite the high prevalence of acute kidney injury (AKI) and its association with increased morbidity and mortality, therapeutic approaches for AKI are disappointing. This is largely attributed to poor understanding of the pathogenesis of AKI. Heparanase, an endoglycosidase that cleaves heparan sulfate, is involved in extracellular matrix turnover, inflammation, kidney dysfunction, diabetes, fibrosis, angiogenesis and cancer progression. The current study examined the involvement of heparanase in the pathogenesis of ischemic reperfusion (I/R) AKI in a mouse model and the protective effect of PG545, a potent heparanase inhibitor. I/R induced tubular damage and elevation in serum creatinine and blood urea nitrogen to a higher extent in heparanase over-expressing transgenic mice vs. wild type mice. Moreover, TGF-\u3b2, vimentin, fibronectin and \u3b1-smooth muscle actin, biomarkers of fibrosis, and TNF\u3b1, IL6 and endothelin-1, biomarkers of inflammation, were upregulated in I/R induced AKI, primarily in heparanase transgenic mice, suggesting an adverse role of heparanase in the pathogenesis of AKI. Remarkably, pretreatment of mice with PG545 abolished kidney dysfunction and the up-regulation of heparanase, pro-inflammatory (i.e., IL-6) and pro-fibrotic (i.e., TGF-\u3b2) genes induced by I/R. The present study provides new insights into the involvement of heparanase in the pathogenesis of ischemic AKI.Our results demonstrate that heparanase plays a deleterious role in the development of renal injury and kidney dysfunction,attesting heparanase inhibition as a promising therapeutic approach for AKI

    Heparanase Promotes Engraftment and Prevents Graft versus Host Disease in Stem Cell Transplantation

    Get PDF
    Heparanase, endoglycosidase that cleaves heparan sulfate side chains of heparan sulfate proteoglycans, plays important roles in cancer metastasis, angiogenesis and inflammation.Applying a mouse model of bone marrow transplantation and transgenic mice over-expressing heparanase, we evaluated the effect of heparanase on the engraftment process and the development of graft-versus-host disease.Analysis of F1 mice undergoing allogeneic bone marrow transplantation from C57BL/6 mice demonstrated a better and faster engraftment in mice receiving cells from donors that were pretreated with heparanase. Moreover, heparanase treated recipient F1 mice showed only a mild appearance of graft-versus-host disease and died 27 days post transplantation while control mice rapidly developed signs of graft-versus-host disease (i.e., weight loss, hair loss, diarrhea) and died after 12 days, indicating a protective effect of heparanase against graft-versus-host disease. Similarly, we applied transgenic mice over-expressing heparanase in most tissues as the recipients of BMT from C57BL/6 mice. Monitoring clinical parameters of graft-versus-host disease, the transgenic mice showed 100% survival on day 40 post transplantation, compared to only 50% survival on day 14, in the control group. In vitro and in vivo studies revealed that heparanase inhibited T cell function and activation through modulation of their cytokine repertoire, indicated by a marked increase in the levels of Interleukin-4, Interleukin-6 and Interleukin-10, and a parallel decrease in Interleukin-12, tumor necrosis factor-alfa and interferon-gamma. Using point mutated inactive enzyme, we found that the shift in cytokine profile was independent of heparanase enzymatic activity.Our results indicate a significant role of heparanase in bone marrow transplantation biology, facilitating engraftment and suppressing graft-versus-host disease, apparently through an effect on T cell activation and cytokine production pattern

    Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation

    Get PDF
    Hepcidin is the key regulator of systemic iron availability that acts by controlling the degradation of the iron exporter ferroportin. It is expressed mainly in the liver and regulated by iron, inflammation, erythropoiesis and hypoxia. The various agents that control its expression act mainly via the BMP6/SMAD signaling pathway. Among them are exogenous heparins, which are strong hepcidin repressors with a mechanism of action not fully understood but that may involve the competition with the structurally similar endogenous Heparan Sulfates (HS). To verify this hypothesis, we analyzed how the overexpression of heparanase, the HS degrading enzyme, modified hepcidin expression and iron homeostasis in hepatic cell lines and in transgenic mice. The results showed that transient and stable overexpression of heparanase in HepG2 cells caused a reduction of hepcidin expression and of SMAD5 phosphorylation. Interestingly, the clones showed also altered level of TfR1 and ferritin, indices of a modified iron homeostasis. The heparanase transgenic mice showed a low level of liver hepcidin, an increase of serum and liver iron with a decrease in spleen iron content. The hepcidin expression remained surprisingly low even after treatment with the inflammatory LPS. The finding that modification of HS structure mediated by heparanase overexpression affects hepcidin expression and iron homeostasis supports the hypothesis that HS participate in the mechanisms controlling hepcidin expression

    Adhesion, Spreading and Fragmentation of Human Megakaryocytes Exposed to Subendothelial Extracellular Matrix: A Scanning Electron Microscopy Study

    Get PDF
    Platelet agonists and subendothelial extra-cellular matrix (ECM) induce morphological and biochemical changes in animal megakaryocytes, reminiscent of the response of platelets to the same substances. We have examined the behavior of human megakaryocytes exposed for up to 36 hours to the ECM produced by cultured bovine corneal endothelial cells. By phase contrast and scanning electron microscopy these megakaryocytes demonstrated non-reversible adherence and flattening with formation of long filopodia, thus confirming that human megakaryocytes acquire platelet functional capacities. In addition, megakaryocyte fragmentation into prospective platelets was apparently induced by the ECM. Up to 50% of the adherent megakaryocytes underwent spontaneous fragmentation into small particles which individually reacted like platelets on the ECM. The interaction of the megakaryocytes with the ECM was specific since no adherence, flattening or fragmentation occured upon incubation of the megakaryocytes on regular tissue culture plastic or glutaraldehyde fixed ECM. Thus we have demonstrated platelet like behaviour of human megakaryocytes in response to this physiological basement membrane and a possible role of the subendothelium in platelet production which may occur in vivo as megakaryocytes cross the sinusoid walls and enter the blood stream

    Role of Heparanase on Hepatic Uptake of Intestinal Derived Lipoprotein and Fatty Streak Formation in Mice

    Get PDF
    BACKGROUND: Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles. PRINCIPAL FINDINGS: To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied. Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm(2)±5,922 vs. 4,189 µm(2)±1,130, p<0.001). CONCLUSIONS: Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks
    • …
    corecore