5,782 research outputs found
Modelling of the Supply Chain Planning for the Business and Economic Security
Abstractβ Strategic supply-chain planning that combines aspects of business-strategy formulation with aspects of tactical supply-chain planning can make each far more valuable to the planning effort than either would be alone. The purpose of this article is to assess the economic security of the enterprise in terms of the efficiency of the use of supply chain planning, taking into account the possibility of production and sale of manufactured products. In case of falling demand for products, there are free capacities in the enterprise, which are useful to use to organize the production of additional items. Underutilization of the enterprise leads to higher costs, lower profitability and lower revenues, thus reducing the interest of the owners in the enterprise and thus threatening its existence. The article proposes a system of mathematical models, which allows to effectively use the capacity of the enterprise to increase its profitability due to the self-contained production of additional nomenclature, due to the use of temporarily increasing capacity. As the main hypothesis in the construction of the model, it is assumed that the economic security of the enterprise is determined by the degree of satisfaction of the economic interests of persons interested in the results of its activities. Therefore, it is proposed to consider the economic security of the enterprise from the point of view of effective use of the assets of the enterprise, which creates prerequisites for timely and full fulfilment of mutual obligations by the enterprise on the one hand, and by the owner, personnel, clients, partners, the State on the other. The proposed system of mathematical models implies that the enterprise is oriented towards the production of mass products, the realization of which involves a certain risk. The model assumes that the enterprise produces several types of industrial nomenclature and has the possibility to organize the production of additional nomenclature using available free capacities. The proposed model is intended to assess the feasibility of production, determine the best value for money and thereby increase the profitability of the enterprise. The use of a system of models improves the current activities of the enterprise, the feasibility and effectiveness of the existing innovation policy for the renewal of the production programme. The article provides recommendations for practical use of the model.
ΠΠΎΠ²Ρ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π°Π³Π΅Π½ΡΠΈ Π· ΡΡΠ΄Ρ Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ Π°ΡΠΈΠ»Π°ΠΌΡΠ΄ΡΠ² 4-(4- ΠΎΠΊΡΠΎ -4H-Ρ ΡΠ½Π°Π·ΠΎΠ»ΡΠ½-3-ΡΠ»)-ΠΏΡΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½-1-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΈΡ ΠΊΠΈΡΠ»ΠΎΡ
The methods for the synthesis of the substituted arylamides of 4-(4-oxo-4H-quinazolin-3-yl)-piperidine-1-carboxylic acids using the technologies of the liquid-phase parallel synthesis have been developed. The structureΒ of the compounds obtained has been conο¬ rmed by the data of the instrumental methods of organic analysis.Β The antibacterial activity of the compounds obtained has been studied using the agar βwellβ diffusion methodΒ against the standard test-strains of microorganisms. The results of the screening performed have shown thatΒ all compounds inhibit the growth of Staphylococcus aureus and Bacillus subtilis strains. The strains of ProteusΒ vulgaris and Pseudomonas aeruginosa have been found to be the most resistant. The SAR-analysis of theΒ substituted arylamides of 4-(4-oxo-4H-quinazolin-3-yl)-piperidine-1-carboxylic acids has demonstrated that theΒ presence of the electron-donating substituents in position 8 of the quinazolin-4-one cycle and in position 4 ofΒ the aromatic fragment of the urea increases the activity of the compounds of this series against gram-positiveΒ bacteria. Such high efο¬ cacy of the lead compounds against the gram-positive bacterial strains can be appliedΒ for creating the narrow spectrum antibiotics derived from arylamides of 4-(4-oxo-4H-quinazolin-3-yl)-piperidine-1-carboxylic acids.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠΈΠ½ΡΠ΅Π·Π° Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
Π°ΡΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎΠ² 4-(4-ΠΎΠΊΡΠΎ-4H-Ρ
ΠΈΠ½Π°Π·ΠΎΠ»ΠΈΠ½-3-ΠΈΠ»)-ΠΏΠΈΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½-1-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π°. Π‘ΡΡΡΠΊΡΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΎ Π΄Π°Π½Π½ΡΠΌΠΈ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π°. ΠΠ½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Β«ΠΊΠΎΠ»ΠΎΠ΄ΡΠ΅Π²Β» Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌΒ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ
ΡΠ΅ΡΡ-ΡΡΠ°ΠΌΠΌΠΎΠ² ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ². ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ³Π½Π΅ΡΠ°ΡΡ ΡΠΎΡΡ Staphylococcus aureus ΠΈ Bacillus subtilis, Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ΅Π²ΡΡΠ°ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΠΎΠΉΠΊΠΈΠΌΠΈ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΠΌ Π²Π΅ΡΠ΅ΡΡΠ²Π°ΠΌ ΠΎΠΊΠ°Π·Π°Π»ΠΈΡΡΒ Proteus vulgaris ΠΈ Pseudomonas aeruginosa. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ SAR-Π°Π½Π°Π»ΠΈΠ· Π΄Π»Ρ ΡΡΠ΄Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
Π°ΡΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎΠ² 4-(4-ΠΎΠΊΡΠΎ-4H-Ρ
ΠΈΠ½Π°Π·ΠΎΠ»ΠΈΠ½-3-ΠΈΠ»)-ΠΏΠΈΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½-1-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ΄ΠΎΠ½ΠΎΡΠ½ΡΡ
Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Π΅ΠΉ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 8 Ρ
ΠΈΠ½Π°Π·ΠΎΠ»ΠΈΠ½-4-ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 4 Π°ΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ° ΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΄Π° ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΌ. ΠΠ°Π»ΠΈΡΠΈΠ΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ-Π»ΠΈΠ΄Π΅ΡΠΎΠ² ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠ°ΠΌΠΌΠ°ΠΌ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π³ΠΎΠ²ΠΎΡΠΈΡΡ ΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΠ·ΠΊΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
Π°ΡΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎΠ² 4-(4-ΠΎΠΊΡΠΎ-4H-Ρ
ΠΈΠ½Π°Π·ΠΎΠ»ΠΈΠ½-3-ΠΈΠ»)-ΠΏΠΈΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½-1-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ.Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠΈΠ½ΡΠ΅Π·Ρ Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
Π°ΡΠΈΠ»Π°ΠΌΡΠ΄ΡΠ² 4-(4-ΠΎΠΊΡΠΎ-4H-Ρ
ΡΠ½Π°Π·ΠΎΠ»ΡΠ½-3-ΡΠ»)-ΠΏΡΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½-1-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡ ΡΡΠ΄ΠΈΠ½Π½ΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠ°Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Ρ. Π‘ΡΡΡΠΊΡΡΡΡ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΆΠ΅Π½ΠΎ Π΄Π°Π½ΠΈΠΌΠΈ ΡΡΠ·ΠΈΠΊΠΎ-Ρ
ΡΠΌΡΡΠ½ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΡΠ² Π°Π½Π°Π»ΡΠ·Ρ. ΠΠ½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΈΡ
Β ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Β«ΠΊΠΎΠ»ΠΎΠ΄ΡΠ·ΡΠ²Β» ΡΠ· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΈΡ
ΡΠ΅ΡΡ-ΡΡΠ°ΠΌΡΠ² ΠΌΡΠΊΡΠΎΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡΠ². ΠΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΡΡ ΡΠΏΠΎΠ»ΡΠΊΠΈ ΠΏΡΠΈΠ³Π½ΡΡΡΡΡΡ ΡΡΡΡ Staphylococcus aureusΒ ΡΠ° Bacillus subtilis, Π° Π΄Π΅ΡΠΊΡ Π·Π½Π°ΡΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΈΡΡΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ. ΠΠ°ΠΉΠ±ΡΠ»ΡΡ ΡΡΡΠΉΠΊΠΈΠΌΠΈΒ Π΄ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Π²ΠΈΡΠ²ΠΈΠ»ΠΈΡΡ Proteus vulgaris ΡΠ° Pseudomonas aeruginosa. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ SAR-Π°Π½Π°Π»ΡΠ·Β Π΄Π»Ρ ΡΡΠ΄Ρ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
Π°ΡΠΈΠ»Π°ΠΌΡΠ΄ΡΠ² 4-(4-ΠΎΠΊΡΠΎ-4H-Ρ
ΡΠ½Π°Π·ΠΎΠ»ΡΠ½-3-ΡΠ»)-ΠΏΡΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½-1-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ,Β Π·Π³ΡΠ΄Π½ΠΎ Π· ΡΠΊΠΈΠΌ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π½Π°ΡΠ²Π½ΡΡΡΡ Π΅Π»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ΄ΠΎΠ½ΠΎΡΠ½ΠΈΡ
Π·Π°ΠΌΡΡΠ½ΠΈΠΊΡΠ² Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 8 Ρ
ΡΠ½Π°Π·ΠΎΠ»ΡΠ½-4-ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎΒ ΡΠΈΠΊΠ»Ρ ΡΠ° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 4 Π°ΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΎΡΒ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π΄Π°Π½ΠΎΠ³ΠΎ ΡΡΠ΄Ρ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
Π±Π°ΠΊΡΠ΅ΡΡΠΉ. ΠΠ°ΡΠ²Π½ΡΡΡΡ Π·Π½Π°ΡΠ½ΠΎΡ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΏΠΎΠ»ΡΠΊ-Π»ΡΠ΄Π΅ΡΡΠ² ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
ΡΡΠ°ΠΌΡΠ² ΠΌΡΠΊΡΠΎΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡΠ² Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ Π³ΠΎΠ²ΠΎΡΠΈΡΠΈ ΠΏΡΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² Π²ΡΠ·ΡΠΊΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° Π΄ΡΡ Π½Π° Β ΠΎΡΠ½ΠΎΠ²Ρ Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
Π°ΡΠΈΠ»Π°ΠΌΡΠ΄ΡΠ² 4-(4-ΠΎΠΊΡΠΎ-4H-Ρ
ΡΠ½Π°Π·ΠΎΠ»ΡΠ½-3-ΡΠ»)-ΠΏΡΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½-1-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ
Computer Microscopy of Biological Fluid Dry Patterns for Medical Diagnostics
We elaborate hardware and software system that implements the principle of diagnosis based on the standard procedure of pattern preparation including digital recognition of image and its computer analysis based on specially developed algorithms by comparing with the expert descriptors and extensive database of dry pattern samples obtained from clinical treatments which include more than 1500 samples to high selective and accuracy recognition of pathologies, for recognition of wide range of pathologies, in particular, the endogenous intoxication.
Keywords: biological fluids, image analysis, medical diagnostics, endogenous intoxication
Effect of cations (Mg2+, Zn2+, Cd2+) on formation of the mineral phase in Ca(NO3)2-Mg(NO3)2-Na2HPO4-H2O system
Synthesis of hydroxyapatite in the system Ca(NO3)2-Me(NO3)2-NaHPO4-H2O with pH in the range of 6-12.2 is performed, and hydroxyapatite of B-type is formed. The effect of magnesium, zinc and cadmium ions on the properties of hydroxyapatite is studied. It is shown that as the concentration of these ions increases, the crystallinity of hydroxyapatite and the Ca/P ratio decreases. It is found that in all the experiments Zn2+ cations affect the hydroxyapatite structure to a lesser extent which results in less structural defects, wherein the Ca/P ratio attains the highest values. It is shown that the solubility of the samples containing zinc ions is greater than that of the samples with other additives
Effect of cations (Mg2+, Zn2+, Cd2+) on formation of the mineral phase in Ca(NO3)2-Mg(NO3)2-Na2HPO4-H2O system
Synthesis of hydroxyapatite in the system Ca(NO3)2-Me(NO3)2-NaHPO4-H2O with pH in the range of 6-12.2 is performed, and hydroxyapatite of B-type is formed. The effect of magnesium, zinc and cadmium ions on the properties of hydroxyapatite is studied. It is shown that as the concentration of these ions increases, the crystallinity of hydroxyapatite and the Ca/P ratio decreases. It is found that in all the experiments Zn2+ cations affect the hydroxyapatite structure to a lesser extent which results in less structural defects, wherein the Ca/P ratio attains the highest values. It is shown that the solubility of the samples containing zinc ions is greater than that of the samples with other additives
Conformal Transformations of the Wigner Function and Solutions of the Quantum Corrected Vlasov Equation
We study conformal properties of the quantum kinetic equations in curved
spacetime. A transformation law for the covariant Wigner function under
conformal transformations of a spacetime is derived by using the formalism of
tangent bundles. The conformal invariance of the quantum corrected Vlasov
equation is proven. This provides a basis for generating new solutions of the
quantum kinetic equations in the presence of gravitational and other external
fields. We use our method to find explicit quantum corrections to the class of
locally isotropic distributions, to which equilibrium distributions belong. We
show that the quantum corrected stress--energy tensor for such distributions
has, in general, a non--equilibrium structure. Local thermal equilibrium is
possible in quantum systems only if an underlying spacetime is conformally
static (not stationary). Possible applications of our results are discussed.Comment: 30 page
Domain formation by ion beam in lithium niobate crystal with suppression of surface charging by electron and UV-flood guns
The equipment of the Ural Center for Shared Use βModern nanotechnologyβ Ural Federal University was used. The research was made possible by the Russian Science Foundation (grant β 17-72-10152)
Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states
The photonic band dispersion and density of states (DOS) are calculated for
the three-dimensional (3D) hexagonal structure corresponding to a distributed
Bragg reflector patterned with a 2D triangular lattice of circular holes.
Results for the Si/SiO and GaAs/AlGaAs systems determine the optimal
parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of
the multilayer. The DOS is considerably reduced in correspondence with the
overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS
weighted with the squared electric field at a given point) has strong
variations depending on the position. Both results imply substantial changes of
spontaneous emission rates and patterns for a local emitter embedded in the
structure and make this system attractive for the fabrication of a 3D photonic
crystal with controlled radiative properties.Comment: 8 pages, 5 figures; to appear in Phys. Rev.
Π‘ΠΈΠ½ΡΠ΅Π·, ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΠ° Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠΎΡ ΡΠ΄Π½ΠΈΡ 7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΡΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½Ρ
Aim. To synthesize the series of 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-dione, to study their spectral properties and antibacterial activity.Materials and methods. The methods of organic synthesis, instrumental methods of organic compounds analysis, as well as the agar diffusion method were used.Results and discussion. By the interaction of 3-arymethyl-1,3,7-triazaspiro[4.4]nonane-2,4-diones with arenesulfonyl cholrides in the presence of triethylamine the series of 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-dione was obtained. For the compounds containing the fragments of 1-sulfonylamido-(2,4)- and 3,4-difluorobenzene the 1H-1H coupling constants in their 1H{19F}-NMR fluorine decoupled spectra, as well as the 19F-19F coupling constants in the 19F{1H}-NMR proton decoupled spectra were measured. The antimicrobial activity screening showed that the growth of such bacterial strains as Staphylococcus aureus and Bacillus subtilis was inhibited by the compounds of the series obtained.Conclusions. It has been found that the interaction of 3-arymethyl-1,3,7-triazaspiro[4.4]nonane-2,4-diones with arenesulfonyl cholrides is an effective way for the synthesis of 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-diones with the promising biological activity against the strains of gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis. Among 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-dione derivatives 3-(3-methylbenzyl)-7-(toluene-4-sulfonyl)-1,3,7-triazaspiro[4.4]nonane-2,4-dione exhibited the highest activity.Β Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ β ΡΠΈΠ½ΡΠ΅Π· ΡΡΠ΄Π° 7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΠΈΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΠΈΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ², ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ
ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΈ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ΅ΡΠΎΠ΄Ρ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π°, ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, ΠΌΠ΅ΡΠΎΠ΄ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ 3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΠΈΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ² Ρ Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π°ΠΌΠΈ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΡΠΈΡΡΠΈΠ»Π°ΠΌΠΈΠ½Π° Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ ΡΡΠ΄ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΠΈΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΠΈΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΠΈΠΎΠ½Π°. ΠΠ»Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
1-ΡΡΠ»ΡΡΠ°Π½ΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎ-(2,4)- ΠΈ 3,4-Π΄ΠΈΡΡΠΎΡΠ±Π΅Π½Π·ΠΎΠ»ΡΠ½ΡΠ΅ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡ, ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Ρ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ ΡΠΏΠΈΠ½-ΡΠΏΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄-Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ Π² 1Π{19F}-Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
Ρ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄-ΡΡΠΎΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ ΡΠΏΠΈΠ½-ΡΠΏΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΡΠΎΡ-ΡΡΠΎΡ Π² 19F{1Π} Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
. ΠΠ°Π½Π½ΡΠ΅ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΊΡΠΈΠ½ΠΈΠ½Π³Π° ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Staphylococcus aureus ΠΈ Bacillus subtilis, ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Ρ ΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡΠΌ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΡΡΠ΄Π°.ΠΡΠ²ΠΎΠ΄Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ 3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΠΈΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ² Ρ Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π°ΠΌΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΈΠ½ΡΠ΅Π·Π° 7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΠΈΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΠΈΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΡΠ²Π»ΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΡΠ°ΠΌΠΌΠ°ΠΌ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ Staphylococcus aureus ΠΈ Bacillus subtilis. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΡΠ΄Ρ Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΠΈΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΠΈΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΏΡΠΎΡΠ²ΠΈΠ» 3-(3-ΠΌΠ΅ΡΠΈΠ»Π±Π΅Π½Π·ΠΈΠ»)-7-(ΡΠΎΠ»ΡΠΎΠ»-4-ΡΡΠ»ΡΡΠΎΠ½ΠΈΠ»)-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΠΈΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΠΈΠΎΠ½.ΠΠ΅ΡΠ° ΡΠΎΠ±ΠΎΡΠΈ β ΡΠΈΠ½ΡΠ΅Π· ΡΡΠ΄Ρ 7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΡΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½ΡΠ², Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΡ
ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ° Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ.ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠ΅ΡΠΎΠ΄ΠΈ ΠΎΡΠ³Π°Π½ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Ρ, ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½Ρ Π±ΡΠ΄ΠΎΠ²ΠΈ ΠΎΡΠ³Π°Π½ΡΡΠ½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ, ΠΌΠ΅ΡΠΎΠ΄ Π΄ΠΈΡΡΠ·ΡΡ Π² Π°Π³Π°Ρ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΡΠΈ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ 3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½ΡΠ² Π· Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π°ΠΌΠΈ Π² ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ΅ΡΠΈΠ»Π°ΠΌΡΠ½Ρ Π±ΡΠ»ΠΎ ΠΎΡΡΠΈΠΌΠ°Π½ΠΎ ΡΡΠ΄ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΡΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½Ρ. ΠΠ»Ρ ΡΠΏΠΎΠ»ΡΠΊ, ΡΠΎ ΠΌΡΡΡΡΡΡ 1-ΡΡΠ»ΡΡΠ°Π½ΡΠ»Π°ΠΌΡΠ΄ΠΎ-(2,4)- ΡΠ° 3,4-Π΄ΠΈΡΠ»ΡΠΎΡΠΎΠ±Π΅Π½Π·Π΅Π½ΠΎΠ²Ρ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΈ, Π²ΠΈΠΌΡΡΡΠ½Ρ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΈ ΡΠΏΡΠ½-ΡΠΏΡΠ½ΠΎΠ²ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΠΡΠ΄ΡΠΎΠ³Π΅Π½-ΠΡΠ΄ΡΠΎΠ³Π΅Π½ Ρ 1Π{19F}-Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
Π· ΠΏΡΠΈΠ³Π½ΡΡΠ΅Π½Π½ΡΠΌ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΠΡΠ΄ΡΠΎΠ³Π΅Π½-Π€Π»ΡΠΎΡ, Π° ΡΠ°ΠΊΠΎΠΆ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΈ ΡΠΏΡΠ½-ΡΠΏΡΠ½ΠΎΠ²ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π€Π»ΡΠΎΡ-Π€Π»ΡΠΎΡ Ρ 19F{1Π} Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
. ΠΠ°Π½Ρ ΠΌΡΠΊΡΠΎΠ±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΈΠ½ΡΠ½Π³Ρ ΠΏΠΎΠΊΠ°Π·ΡΡΡΡ, ΡΠΎ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½Ρ Π±Π°ΠΊΡΠ΅ΡΡΡ, ΡΠ°ΠΊΡ ΡΠΊ Staphylococcus aureus ΡΠ° Bacillus subtilis Ρ ΡΡΡΠ»ΠΈΠ²ΠΈΠΌΠΈ Π΄ΠΎ ΡΠΏΠΎΠ»ΡΠΊ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΎΠ³ΠΎ ΡΡΠ΄Ρ. ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ 3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½ΡΠ² Π· Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π°ΠΌΠΈ Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΈΠ½ΡΠ΅Π·Ρ 7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΡΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½ΡΠ², ΡΠΊΡ ΠΏΡΠΎΡΠ²Π»ΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ ΡΡΠ°ΠΌΡΠ² Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
Π±Π°ΠΊΡΠ΅ΡΡΠΉ Staphylococcus aureus ΡΠ° Bacillus subtilis. ΠΠ°ΠΉΠ±ΡΠ»ΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π² ΡΡΠ΄Ρ Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
7-Π°ΡΠ΅Π½ΡΡΠ»ΡΡΠΎΠ½ΡΠ»-3-Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½ΡΠ² ΠΏΡΠΎΡΠ²ΠΈΠ² 3-(3-ΠΌΠ΅ΡΠΈΠ»Π±Π΅Π½Π·ΠΈΠ»)-7-(ΡΠΎΠ»ΡΠ΅Π½-4-ΡΡΠ»ΡΡΠΎΠ½ΡΠ»)-1,3,7-ΡΡΠΈΠ°Π·Π°ΡΠΏΡΡΠΎ[4.4]Π½ΠΎΠ½Π°Π½-2,4-Π΄ΡΠΎΠ½.
Vortex Plastic Motion in Twinned Superconductors
We present simulations, without electrodynamical assumptions, of
, and , in hard superconductors, for a variety
of twin-boundary pinning potential parameters, and for a range of values of the
density and strength of the pinning sites. We numerically solve the overdamped
equations of motion of up to 10^4 flux-gradient-driven vortices which can be
temporarily trapped at pinning centers. These simulations relate
macroscopic measurements (e.g., M(H), ``flame'' shaped profiles) with
the underlying microscopic pinning landscape and the plastic dynamics of
individual vortices
- β¦