14 research outputs found

    ВлияниС ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ цисплатина с брассиностСроидами Π½Π° рост Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ

    Get PDF
    In this work, the effect of brassinosteroids on the antitumor activity of classical cytostatic cisplatin in tumor cell lines A549 (human lung carcinoma) and Hep G2 (human hepatocellular carcinoma) was evaluated. Natural brassinosteroids 24-epibrassinolide and 28-homocastasterone, as well as their synthetic analogues (22S,23S)-24-epibrassinolide and (22S,23S)-28-homocastasterone were used. All four compounds with cisplatin inhibited the growth of cancer cells more effectively than cisplatin alone. Combinations with low concentrations of synthetic brassinosteroids were more effecient, and at 1 Β΅M decreased the IC50 of cisplatin by almost 2 times. The results suggest a possible benefit of combinations of classical antitumor drugs with brassinosteroids in overcoming the negative effects of chemotherapy by reducing their effective doses.Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… брассиностСроидов 24-эпибрассинолида ΠΈ 28-гомокастастСрона, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… синтСтичСских Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² (22S,23S)-24-эпибрассинолида ΠΈ (22S,23S)-28-гомокастастСрона Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ классичСского цитостатика цисплатина Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… линиях A549 (ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° Π»Π΅Π³ΠΊΠΈΡ… Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°) ΠΈ Hep G2 (ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°). ВсС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ соСдинСния Π² сочСтании с цисплатином ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ рост Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π‘ΠΎΠ»Π΅Π΅ эффСктивными Π±Ρ‹Π»ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ концСнтрациями синтСтичСских брассиностСроидов. ΠŸΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ брассиностСроидов Π² 1 мкМ IC50 цисплатина ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»Π°ΡΡŒ ΠΏΠΎΡ‡Ρ‚ΠΈ Π² 2 Ρ€Π°Π·Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ возмоТности сниТСния эффСктивных Π΄ΠΎΠ· классичСских ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡ… использования Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с брассиностСроидами, Ρ‡Ρ‚ΠΎ способствовало Π±Ρ‹ ΡΠΌΡΠ³Ρ‡Π΅Π½ΠΈΡŽ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… послСдствий Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    ΠΠΠ’Π˜ΠšΠΠΠ¦Π•Π ΠžΠ“Π•ΠΠΠΠ― ΠΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ Π‘Π ΠΠ‘Π‘Π˜ΠΠžΠ‘Π’Π•Π ΠžΠ˜Π”ΠžΠ’ Π’ ОПУΠ₯ΠžΠ›Π•Π’Π«Π₯ ΠšΠ›Π•Π’ΠšΠΠ₯ КАРЦИНОМЫ ΠŸΠ•Π§Π•ΠΠ˜

    Get PDF
    In this study, we first characterized the effect of natural brassinosteroids, 24-epibrassinolide (EBl) and 28-homocastasterone (HCS), and synthetic analogs, (22S,23S)-24-epibrassinolide and (22S,23S)-28-homocastastone, on the growth of the cancer cell line Hep G2 (hepatocellular carcinoma), as well as on the catalytic activity of cytochrome P450, which participates in the metabolism of most procarcinogens. All four compounds at high concentrations suppressed the proliferation of the test cell line. It is also interesting that at low concentrations, 24-EBl, (22S,23S)-24-EBl and (22S,23S)28-HCS activated significantly the Hep G2 cell growth. All studied brassinosteroids, except for 28-HCS, inhibited the activity of CYP1A1 and CYP1B1. The effect depended on the structure of the side chain and was more pronounced in the case of the SS orientation of the hydroxyl groups at the positions C22 and C23 ((22S,23S)-28-homocastasterone). The results of this work suggest that the studied brassinosteroids (especially (22S,23S)-28-homocastasterone) can be used to create effective drugs for tumor prevention and treatment.Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ влияниС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… брассиностСроидов 24-эпибрассинолида (24-Π­Π‘) ΠΈ 28-гомокастастСрона (28-Π“ΠšΠ‘), Π° Ρ‚Π°ΠΊΠΆΠ΅ синтСтичСских Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² (22S,23S)-24-эпибрассинолида ΠΈ (22S,23S)-28-гомокастастСрона Π½Π° ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ активности Π² Ρ€Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Hep G2 (ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ), Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠ° P450, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ участвуСт Π² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ΅ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ΠΏΡ€ΠΎΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½ΠΎΠ². ВсС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ соСдинСния ΠΏΡ€ΠΈ высоких концСнтрациях Π±Ρ‹Π»ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π² ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ исслСдуСмой Π»ΠΈΠ½ΠΈΠΈ. Π˜Π½Ρ‚Π΅Ρ€Π΅ΡΠ½Ρ‹ΠΌ являСтся ΠΈ Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… концСнтрациях 24-Π­Π‘, (22S,23S)-24-Π­Π‘ ΠΈ (22S,23S)-28-Π“ΠšΠ‘ достовСрно Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ рост ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Hep G2. ВсС исслСдуСмыС брассиностСроиды ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ CYP1A1 ΠΈ CYP1B1, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ 28-Π“ΠšΠ‘. ΠžΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ эффСкт зависСл ΠΎΡ‚ структуры Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Ρ†Π΅ΠΏΠΈ ΠΈ Π±Ρ‹Π» Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Π² случаС SSΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ C22 ΠΈ Π‘23 ((22S,23S)-28-гомокастастСрон). ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования исслСдуСмых брассиностСроидов (Π² наибольшСй стСпСни (22S,23S)-28-Π“ΠšΠ‘) для создания Π±ΠΎΠ»Π΅Π΅ эффСктивных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² для ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ лСчСния ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ.

    Relative and Absolute Configuration of Allohedycaryol. Enantiospecific Total Synthesis of Its Enantiomer

    Get PDF
    The enantiomer of (+)-allohedycaryol, a germacrane alcohol isolated from giant fennel (Ferula communis L.), has been synthesized, thereby elucidating the relative and absolute stereochemistry of the natural product. The synthesis of (-)-allohedycaryol started from (+)-Ξ±-cyperone (5) which was available in relatively large quantities via alkylation of imine 7 derived from (+)-dihydrocarvone and (R)-(+)-1-phenylethylamine. In a number of steps 5 was converted into the mesylate 4 with a regio- and stereoselective epoxidation as the key step. A Marshall fragmentation of 4 was used to prepare the trans,trans-cyclodeca-1,6-diene ring present in allohedycaryol. The conformation of synthetic (-)-allohedycaryol was elucidated via photochemical conversion into a bourbonane system. The synthesis of (-)-allohedycaryol also showed that natural (+)-allohedycaryol has the opposite absolute stereochemistry to that normally found in higher plants.

    Synthesis of [7,7-2H2]epibrassinolide

    No full text
    Synthesis of labelled epibrassinolide containing two deuterium atoms in a position which is not subjected to isotopic exchange is reported. Key transformations include preparation of 6,7-seco steroidal diacid, its cyclization to a cyclic anhydride followed by a regioselective reduction with NaBD4. The obtained [7,7-2H2]epibrassinolide can be used in biochemical experiments when the loss of isotopic label should be avoide

    Visible Light-Promoted Catalytic Ring-Opening Isomerization of 1,2-Disubstituted Cyclopropanols to Linear Ketones

    No full text
    In this article, we report a photocatalytic protocol for the isomerization of 1,2-disubstituted cyclopropanols to linear ketones. The reaction proceeds via radical intermediates and tolerates various functional groups

    Palladium-Catalyzed 2-(Neopentylsulfinyl)aniline Directed C-H Acetoxylation and Alkenylation of the Arylacetamides

    No full text
    A directing group that promotes very fast diacetoxylation of the arylacetamides is reported. The auxiliary also promotes alkenylation with vinyl ketones, which were generated in one-pot from the cyclopropanols

    Synthesis of ergostane-type brassinosteroids with modifications in ring A

    No full text
    Herein, we present a new strategy for the preparation of a broad range of brassinosteroid biosynthetic precursors/metabolites differing by the ring A fragment. The protocol is based on the use of readily available phytohormones of this class bearing a 2Ξ±,3Ξ±-diol moiety (epibrassinolide or epicastasterone) as starting materials. The required functionalities (Ξ”2-, 2Ξ±,3Ξ±- and 2Ξ²,3Ξ²-epoxy-, 2Ξ±,3Ξ²-, 2Ξ²,3Ξ±-, and 2Ξ²,3Ξ²-dihydroxy-, 3-keto-, 3Ξ±- and 3Ξ²-hydroxy-, 2Ξ±-hydroxy-3-keto-) were synthesized from 2Ξ±,3Ξ±-diols in a few simple steps (Corey–Winter reaction, epoxidation, oxidation, hydride reduction, etc.)

    New synthesis of castasterone

    No full text
    An improved synthesis that could produce gram quantities of castasterone was proposed. The starting material was stigmasterol, the cyclic part of which was transformed in the first synthetic step into the 3Ξ±,5-cyclo-6-ketone. The side-chain carbon skeleton in the target compound was constructed with the required stereochemistry of the C-24 methyl via addition of methylacetylene, hydrogenation of the propargyl alcohol over Lindlar catalyst, and Claisen rearrangement. Diols were introduced using Sharpless asymmetric dihydroxylation of the intermediate βˆ†2,22-dienone in the presence of (DHQD)2AQN. A unique feature of the synthesis was the avoidance of chromatographic separations of propargyl alcohols with similar chromatographic mobilities because the C-22 diastereomers were enriched in subsequent redox reactions

    New synthesis of castasterone

    No full text
    An improved synthesis that could produce gram quantities of castasterone was proposed. The starting material was stigmasterol, the cyclic part of which was transformed in the first synthetic step into the 3Ξ±,5-cyclo-6-ketone. The side-chain carbon skeleton in the target compound was constructed with the required stereochemistry of the C-24 methyl via addition of methylacetylene, hydrogenation of the propargyl alcohol over Lindlar catalyst, and Claisen rearrangement. Diols were introduced using Sharpless asymmetric dihydroxylation of the intermediate βˆ†2,22-dienone in the presence of (DHQD)2AQN. A unique feature of the synthesis was the avoidance of chromatographic separations of propargyl alcohols with similar chromatographic mobilities because the C-22 diastereomers were enriched in subsequent redox reactions
    corecore