15 research outputs found

    Assessing trigeminal microstructure changes in patients with classical trigeminal neuralgia

    Get PDF
    Introduction. The crucial role of neuro-vascular conflict (NVC) in trigeminal neuralgia (TN) is getting increasingly challenged. Microstructural changes can be assessed using fractional anisotropy (FA) in diffusion tensor images (DTI). Objective. To evaluate usefulness of FA in brain MRI with DTI for TN lateralization assessment. Materials and methods. The study included 51 patients with classical TN divided into two groups: neurosurgical intervention free, post radiofrequency ablation (RFA), and a control group (patients without facial pain). All the patients were tested for NVC with FIESTA (Fast Imaging Employing Steady State Acquisition) brain MRI at 3Т. Difference in thickness of trigeminal roots on the intact and symptomatic sides was assessed for each group. The findings were compared to those in the control group. The MRI protocol was supplemented with DTI. The FA difference in thickness of the intact and symptomatic roots (∆FA) was calculated for each study group to assess microstructural root changes. The results were compared to those in the control group. Results. In trigeminal root DTIs, ∆FA over 0.075 [0.029; 0.146] is statistically significant to establish NVC-associated microstructural changes on the symptomatic side in patients without any past surgeries (p = 0,030). In patients with a history of trigeminal ganglion RFA, statistically significant (p = 0.026) thinned symptomatic trigeminal root (difference in thickness of trigeminal roots over 0.45 cm [0.4; 0.6]) was found as compared to that of the control patients. Conclusion. FA may be used as a quantitative demyelination biomarker in clinical TN. Trigeminal ganglion RFA leads to hypotrophy throughout the trigeminal nerve root

    Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Enzyme Inhibition by a Substrate

    Full text link
    We consider a realization of the XOR logic gate in a process biocatalyzed by an enzyme (here horseradish peroxidase: HRP), the function of which can be inhibited by a substrate (hydrogen peroxide for HRP), when the latter is inputted at large enough concentrations. A model is developed for describing such systems in an approach suitable for evaluation of the analog noise amplification properties of the gate. The obtained data are fitted for gate quality evaluation within the developed model, and we discuss aspects of devising XOR gates for functioning in "biocomputing" systems utilizing biomolecules for information processing

    FungalTraits:A user-friendly traits database of fungi and fungus-like stramenopiles

    Get PDF
    The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold

    A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers

    No full text
    A strategy is proposed for achieving a practically important mode of laser processing—a so-called “smooth” laser filamentation cutting (LFC) of transparent materials by a moving beam of a pulse-periodic pico- or subpicosecond laser. With such cutting, the surface of the sidewalls of the cuts have a significantly improved smoothness, and, as a result, the laser-cut plates have increased resistance to damage and cracking due to mechanical impacts during their subsequent use. According to the proposed analytical model, for the case when each filament is formed only by a single laser pulse, the strategy of such cutting is defined by a set of necessary conditions, whose implementation requires, in turn, a certain selection and matching with each other of irradiation parameters (pulse duration and energy, repetition rate, pitch of filaments following) and of material parameters—thermal, optical and mechanical strength constants. The model shows good agreement with experiments on sapphire and tempered glass. Besides, LFC modes are also predicted that provide very high cutting speeds of the order of 1–25 m/s or more, or allow cutting with an extremely low average laser power, but still at a speed acceptable for practical applications

    Myxobolus pelecicola Voronin et Dudin 2015 is a junior synonym of Myxobolus ladogensis Rumyantsev et Schulman 1997 (Myxosporea: Myxobolidae) infecting the skeletal muscle of sichel Pelecus cultratus (Actinopterygii: Cyprinidae) in Russia

    No full text
    Myxobolus pelecicola Voronin et Dudin, 2015 was recently described from the skeletal musculature of sichel Pelecus cultratus. However, another species, Myxobolus ladogensis Rumyantsev et Schulman, 1997, was described previously from the same host, displaying identical tissue localization and spore morphology as in M. pelecicola. Unfortunately, M. ladogensis was overlooked when M. pelecicola was described, resulting in the superfluous description of the latter species, which, according to the International Code of Zoological Nomenclature, is a junior synonym of M. ladogensis. The description of M. ladogensis is supplemented with SSU rDNA sequence analysis supporting the conspecificity with M. pelecicola. The closest relatives of Myxobolus ladogensis (syn. M. pelecicola) include several muscle-infecting Myxobolus spp. with sequence similarity below 97%

    Aptamer-Targeted Plasmonic Photothermal Therapy of Cancer

    No full text
    Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles

    Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells

    No full text
    Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.peerReviewe
    corecore