72 research outputs found

    Degeneracy breaking and intervalley scattering due to short-ranged impurities in finite single-wall carbon nanotubes

    Get PDF
    We present a theoretical study of degeneracy breaking due to short-ranged impurities in finite, single-wall, metallic carbon nanotubes. The effective mass model is used to describe the slowly varying spatial envelope wavefunctions of spinless electrons near the Fermi level at two inequivalent valleys (K-points) in terms of the four component Dirac equation for massless fermions, with the role of spin assumed by pseudospin due to the relative amplitude of the wave function on the sublattice atoms (``A'' and ``B''). Using boundary conditions at the ends of the tube that neither break valley degeneracy nor mix pseudospin eigenvectors, we use degenerate perturbation theory to show that the presence of impurities has two effects. Firstly, the position of the impurity with respect to the spatial variation of the envelope standing waves results in a sinusoidal oscillation of energy level shift as a function of energy. Secondly, the position of the impurity within the hexagonal graphite unit cell produces a particular 4 by 4 matrix structure of the corresponding effective Hamiltonian. The symmetry of this Hamiltonian with respect to pseudospin flip is related to degeneracy breaking and, for an armchair tube, the symmetry with respect to mirror reflection in the nanotube axis is related to pseudospin mixing.Comment: 20 pages, 10 eps figure

    Triplet pairing due to spin-orbit-assisted electron-phonon coupling

    Get PDF
    We propose a microscopic mechanism for triplet pairing due to spin-orbit-assisted electron interaction with optical phonons in a crystal with a complex unit cell. Using two examples of electrons with symmetric Fermi surfaces in crystals with either a cubic or a layered square lattice, we show that spin-orbit-assisted electron-phonon coupling can, indeed, generate triplet pairing and that, in each case, it predetermines the tensor structure of a p-wave order parameter

    Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene

    Get PDF
    We investigate the contribution of the low-energy electronic excitations towards the Raman spectrum of bilayer graphene for the incoming photon energy Omega >> 1eV. Starting with the four-band tight-binding model, we derive an effective scattering amplitude that can be incorporated into the commonly used two-band approximation. Due to the influence of the high-energy bands, this effective scattering amplitude is different from the contact interaction amplitude obtained within the two-band model alone. We then calculate the spectral density of the inelastic light scattering accompanied by the excitation of electron-hole pairs in bilayer graphene. In the absence of a magnetic field, due to the parabolic dispersion of the low-energy bands in a bilayer crystal, this contribution is constant and in doped structures has a threshold at twice the Fermi energy. In an external magnetic field, the dominant Raman-active modes are the n_{-} to n_{+} inter-Landau-level transitions with crossed polarisation of in/out photons. We estimate the quantum efficiency of a single n_{-} to n_{+} transition in the magnetic field of 10T as I_{n_{-} to n_{+}}~10^{-12}.Comment: 7 pages, 3 figures, expanded version published in PR

    z/-z Symmetry of spin-orbit coupling and weak localization in graphene

    Get PDF
    We show that the influence of spin-orbit (SO) coupling on the weak localization effect for electrons in graphene depends on the lack or presence of z/-z symmetry in the system. While for z/-z asymmetric SO coupling, disordered graphene should display a weak anti-localization behavior at lowest temperature, z/-z symmetric coupling leads to an effective saturation of decoherence time which can be partially lifted by an in-plane magnetic field, thus, tending to restore the weak localization effect.Comment: 5 pages, 1 figur

    Weak localisation magnetoresistance and valley symmetry in graphene.

    Get PDF
    Due to the chiral nature of electrons in a monolayer of graphite (graphene) one can expect weak antilocalisation and a positive weak-field magnetoresistance in it. However, trigonal warping (which breaks p to −p symmetry of the Fermi line in each valley) suppresses antilocalisation, while inter-valley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore conventional negative magnetoresistance. We show this by evaluating the dependence of the magnetoresistance of graphene on relaxation rates associated with various possible ways of breaking a ’hidden’ valley symmetry of the system

    Selective transmission of Dirac electrons and ballistic magnetoresistance of \textit{n-p} junctions in graphene

    Get PDF
    We show that an electrostatically created n-p junction separating the electron and hole gas regions in a graphene monolayer transmits only those quasiparticles that approach it almost perpendicularly to the n-p interface. Such a selective transmission of carriers by a single n-p junction would manifest itself in non-local magnetoresistance effect in arrays of such junctions and determines the unusual Fano factor in the current noise universal for the n-p junctions in graphene.Comment: 4 pages, 2 fig

    Quantum and classical surface acoustic wave induced magnetoresistance oscillations in a 2D electron gas

    Full text link
    We study theoretically the geometrical and temporal commensurability oscillations induced in the resistivity of 2D electrons in a perpendicular magnetic field by surface acoustic waves (SAWs). We show that there is a positive anisotropic dynamical classical contribution and an isotropic non-equilibrium quantum contribution to the resistivity. We describe how the commensurability oscillations modulate the resonances in the SAW-induced resistivity at multiples of the cyclotron frequency. We study the effects of both short-range and long-range disorder on the resistivity corrections for both the classical and quantum non-equilibrium cases. We predict that the quantum correction will give rise to zero-resistance states with associated geometrical commensurability oscillations at large SAW amplitude for sufficiently large inelastic scattering times. These zero resistance states are qualitatively similar to those observed under microwave illumination, and their nature depends crucially on whether the disorder is short- or long-range. Finally, we discuss the implications of our results for current and future experiments on two dimensional electron gases.Comment: 16 pages, 8 figure

    Orbital effect of in-plane magnetic field on quantum transport in chaotic lateral dots

    Full text link
    We show how the in-plane magnetic field, which breaks time-reversal and rotational symmetries of the orbital motion of electrons in a heterostructure due to the momentum-dependent inter-subband mixing, affects weak localisation correction to conductance of a large-area chaotic lateral quantum dot and parameteric dependences of universal conductance fluctuations in it.Comment: 4 pages with a figur

    Distribution of time-constants for tunneling through a 1D Disordered Chain

    Full text link
    The dynamics of electronic tunneling through a disordered 1D chain of finite length is considered. We calculate distributions of the transmission coefficient T, Wigner delay time and, Ï„Ï•\tau_\phi and the transport time, Ï„t=TÏ„Ï•\tau_t=T\tau_\phi. The central bodies of these distributions have a power-law form, what can be understood in terms of the resonant tunneling through localised states.Comment: 5 pages, 3 figures, submitted to PR

    Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures

    Get PDF
    Measurements of resonant tunneling through a localized impurity state are used to probe fluctuations in the local density of states of heavily doped GaAs. The measured differential conductance is analyzed in terms of correlation functions with respect to voltage. A qualitative picture based on the scaling theory of Thouless is developed to relate the observed fluctuations to the statistics of single particle wavefunctions. In a quantitative theory correlation functions are calculated. By comparing the experimental and theoretical correlation functions the effective dimensionality of the emitter is analyzed and the dependence of the inelastic lifetime on energy is extracted.Comment: 41 pages, 14 figure
    • …
    corecore