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We show that an electrostatically created n-p junction separating the electron and hole gas regions in a
graphene monolayer transmits only those quasiparticles that approach it almost perpendicularly to the n-p
interface. Such a selective transmission of carriers by a single n-p junction would manifest itself in nonlocal
magnetoresistance effect in arrays of such junctions and determines the unusual Fano factor in the current noise
universal for the n-p junctions in graphene.
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The chiral nature of quasiparticles in graphene monolay-
ers and bilayers1–6 has been revealed in several recent
experiments.7–11 The Fermi level in a neutral graphene sheet
�a monolayer of carbon atoms with hexagonal lattice struc-
ture� is pinned near the corners of the hexagonal Brillouin
zone which determine two nonequivalent valleys12 in the
quasiparticle spectrum. The quasiparticles in each of the two
valleys ��= ± � are described by the Hamiltonian,3,4

Ĥ1 = �v� · p ,

where the isospin Pauli matrices �i operate in the space of
the electron amplitude on two sites �A and B� in the unit cell
of a hexagonal crystal,12 p= �px , py�=−i� is the momentum
operator13 defined with respect to the center of the corre-
sponding valley, and v is a constant formed by the

A-B hopping.4 The Dirac-type Hamiltonian Ĥ1 determines
the linear dispersion vp for the electron in the conduction
band and −vp for the valence band �“hole” branch of quasi-
particles�. In each valley,12 the electron and “hole” states also
differ by the isospin projection onto the direction of their
momentum; electrons have chirality � ·p / p=1, “holes”
� ·p / p=−1. Therefore, in structures where the quasiparticle
isospin is conserved �a monolayer with electrostatic potential
scattering� their backscattering is strictly forbidden,5 which
gives rise to the peculiar properties of the n-p junction in
graphene reported in this communication.

Since an atomically-thin graphitic film is a gapless semi-
conductor, carrier density in it can be varied using external
gates7 from electrons to holes.7–11 A planar n-p junction in
graphene can be made, e.g, using split gates, and in view of
a rapidly improving mobility of the new material8–10 it may
soon be possible to fabricate ballistic circuits of electrically
controlled graphene-based n-p junctions. Below, we model
the n-p junction in graphene using the electrostatic potential
u�x�=vkF��x /d� characterized by a single length scale d and
the Fermi momentum kF determined by the equal densities of
the electron and hole gases on the opposite sides of it. Here
��±��= ±1, ���0�=1, and the line x=0 separates the p and n
regions. Since in a junction produced by electrostatic gates
the length d is about the intergate distance and exceeds the
electron wavelength in a monolayer, we focus this study on
smooth n-p junctions with kFd�1, and show that their trans-
mission properties are determined by the central region
where u�x��Fx �F=vkF /d�.

The transport properties of a single n-p junction are de-
termined by the angular dependence of the probability w���
of a conduction band electron incident from the left with
an energy equal to the chemical potential �=0 and
px=kF cos � to emerge in the valence band on the right-hand
side of the junction with conserved py =kF sin � but px�=−px.
For a steplike potential, such a probability,

wstep��� = cos2 � �1�

is determined by matching the isospin states exactly at the
n-p interface. In a smooth junction, an electron approaching
the center of the junction with kinetic energy v�px

2+ py
2

has the x component of the electron momentum
px�x�=�u2�x� /v2− py

2. Thus, the classically allowed region
for the conduction band electron motion is determined by the
condition �u�� pyv, and its trajectory cannot extend beyond
the turning point at the distance l=vpy /F from the center of
the junction.14 For a particle incident perpendicular to the
junction �py =0� the classically forbidden region disappears.
Moreover, due to the isospin conservation which prohibits
backscattering of chiral quasiparticles,5 the wave incident at
�=0 is perfectly transmitted, though, for any small �, the
transmission probability is determined by tunnelling
through the classically forbidden region, w�e−2S, where
S= i	−l

l px�x�dx= 1
2�vpy

2 /F. For a smooth n-p junction shown
in Fig. 1 with F=vkF /d and kFd	1, this yields �for the
angles � not too close to 1

2��

w��� = e−��kFd�sin2 �. �2�

The angular dependence of the transmission probability
given in Eq. �2� is, in fact, exact for any smooth junction in

FIG. 1. �Color online� Angular dependence of quasiparticle
transmission through the electrostatically generated n-p junction in
graphene.
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the range �

1
2�−� �similar to Eq. �1�, w� 1

2��=0 for any
profile u�x�� and represents the central result of this paper.
Below, we rigorously derive the results in Eqs. �2� and �1�
using the method of transfer matrix. Similar to the formulas16

describing adiabatic ballistic constrictions in semiconduc-
tors, the applicability of Eq. �2� is not restricted by the con-
straint w�1. This can be used to describe how a smooth
n-p junction selectively transmits only carriers approaching
it within a small angle ��0= ��kFd�−1/2 around the perpen-
dicular direction and to determine the conductance per unit
length of a broad junction,

gnp =
4e2

h

 kFd�

2�
w��� �

2e2

�h
�kF

d
, �3�

and the universal Fano factor17 in the shot noise,

��I · I�� = 1 −�1

2
�eI . �4�

At the end of this paper we shall discuss several ballistic
magnetoresistance effects which exploit the selectivity of
transmission implicit in Eq. �2�.

To formulate the scattering problem, we shall exploit the
separation of x and y variables for the electron motion across
the junction �in the x direction� and the fact that momentum
along the y axis �parallel to the junction� is conserved. This
makes the scattering problem one-dimensional �1D�. The
scattering states at the energy equal to the chemical potential,
�=0, are spinors satisfying the Dirac-type equation

− i�x�x� + v−1u�x�� + py�y� = 0, �5�

which conserves the 1D current Jx=�†�x�.
To find the transmission probability w��� for such states,

we calculate the transfer matrix T�x ,y� �Ref. 18� which sat-
isfies the equation

�xT�x,y� = L�x�T�x,y�, L = − i
u�x�

v
�x + py�z �6�

and the conditions T�y ,y�= I, T�x ,y�=T�x ,z�T�z ,y�,
det T�x ,y�=1, and T†�x ,y��xT�x ,y�=�x. To relate the trans-
mission coefficient w to the transfer matrix T�x ,y� one has to
factor out the asymptotic evolution of the reflected and trans-
mitted waves. This can be done by using matrices A± satis-
fying the wave equation in the asymptotic regions,

�xA±�x� = ��ikF�x + py�z�A±�x� , �7�

such that their columns are made of right- and left-
propagating states normalized to carry the unit current. The
explicit expression for these matrices is

A±�x� =� kF

2px�
px ± ipy

kF
e�ipxx − px ± ipy

kF
e±ipxx

e�ipxx e±ipxx � ,

where px�x�=�u2�x� /v2− py
2=�kF

2 − py
2. Then, the transmis-

sion probability can be found using the matrix

� �*

� �* � � lim
x→�

A+
−1�x�T�x,− x�A−�− x�, w =

1

���2
. �8�

To illustrate the transfer matrix formalism, we calculate
the probability of a Dirac fermion transmission through a
sharp potential step u�x�=vkF sign�x�. In this case, we factor
the transfer matrix as T�x ,y�=T+�x ,0�T−�0,y�, where
T+�−��x ,y� is a transfer matrix on the right �left� side of the
junction, each given by T±�x ,y�=A±�x�A±

−1�y�. Using this so-
lution and Eq. �8� we find

� �*

� �* � = A+
−1�0�A−�0�, � = 1 −

ipy

�kF
2 − py

2
.

For the transmission probability this yields
wstep=1− �py /kF�2=cos2 � in Eq. �1� which manifests the chi-
ral nature of quasiparticles. Indeed, the free electron states of

the Dirac Hamiltonian Ĥ1 have their isospin polarized along
the momentum �for the transmitted electron in the valence
band, with p= �−kF cos � ,kF sin ��, it is antiparallel�, and the
reflection amplitude of an electron is determined by the
scalar product �↗

† ·�↖�sin � of its initial and final state
spinors.

To calculate the transmission probability for a smooth po-
tential with kFd	1, we separate the x axis across the junc-
tion into the inner �i� and outer �o� parts. In the outer part,
�x��cd �where c�1�, we find the T matrix, To using the
method of adiabatic expansion. Then, we match it with the
exact solution, Ti obtained in the central part of the junction,
�x�
d, where the potential u�x� can be linearized,
u�x��kFx /d, and obtain the complete tranfer matrix as
T�y ,x�=To�x ,a�Ti�a ,−a�To�−a ,y�.

For the adiabatic expansion of the transfer matrix To we
use a transformation

Y�x� =
1

u
i� i�*

u u
�, �px�x� =�u2

v2 − py
2

� = py + ipx�x�
� �9�

which locally diagonalizes the L operator in Eq. �6�,

Y−1LY = ipx�x��z. �10�

The transfer matrix T̃o defined in a new basis,

To�x,y� = Y�x�T̃o�x,y�Y−1�y� , �11�

satisfies the equation

�xT̃o�x,y� = ipx�x��zT̃o�x,y� + ��x�T̃o�x,y� ,

Q = − Y−1�xY =
py�xu�x�

2px
2�x�u�x�

− � �*

� − �* � . �12�

In the adiabatic approximation the matrix ��x� is assumed to
be small as compared to the diagonal term px�x��z, and to the
leading order Eq. �12� is solved by

T̃o�x,y� = exp�i�z

y

x

px�x��dx�� . �13�

Formally, the adiabatic approximation is justified if
�pyu� / �upx

2���1, which breaks down near the turning points
px�x�=0 and when u�x�=0. However, for the junctions with
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kFd	1, the interval between turning points lies within the
region of space where the potential profile can be approxi-
mated using the linear function u�x�=kFx /d. The transfer
matrix in this region, Ti can be found from Eq. �6� exactly,
using the transformation

Ti�x,y� = e−i�/4�ye−i��x�/2�zT̃i�x,y�ei��y�/2�zei�/4�y , �14�

where

��x� = kFd−1x2.

This is because the matrix T̃i satisfies the equation

�xT̃i�x,y� = − py 0 ei��x�

e−i��x� 0
�T̃i�x,y� , �15�

where the upper row of T̃i can be expressed in terms of two
linearly independent solutions of the equation

ei��xe
−i��x� = py

2� ,

while the lower row can be expressed in terms of their com-
plex conjugate. Equation �15� is symmetric with respect to
the parity transformation x→−x, and its even/odd solutions
are

�even�x� = �− i
py

2d

4kF
,
1

2
;i�� ,

�odd�x� = − pyx�1

2
− i

py
2d

4kF
,
3

2
;i�� ,

where � is the confluent hypergeometric �Kummer�
function19 with the following asymptotic properties:

��a,b;z → i�� �
��b�

��b − a�
ei�a

za +
1

��a�
ezza−b.

Therefore, inside the interval �x�, �y�
cd the transfer matrix

T̃i can be written as

T̃i�x,y� = B�x�B−1�y�, B = �even �odd

�odd
* �even

* � , �16�

where the matrix B satisfies Eq. �15� and has the unit
Wronskian, det B=1.

Finally, after a chain of substitutions, the obtained solu-
tions for the matching transfer matrices To and Ti can be
combined together into

T�y,x� = To�x,a�Ti�a,− a�To�− a,y� ,

and used to calculate the parameters � and � in Eq. �8�,

� = e�py
2d/2kF,

�* = − e�py
2d/4kF

�2�ei�/4 py
2d

2kF
�1/2+ipy

2d/2kF

�1 +
ipy

2d

2kF
� ei�,

� = px���l − 

l

�

�px�x�� − px����dx�,

needed for determining the transmission probability,

w = ���−2 = e−�py
2d/kF. �17�

A selective transmission of carriers by a smooth n-p junc-
tion described by Eqs. �17� and �2�, with kFd	1, only allows
for the passage of quasiparticles approaching the junction in
an almost perpendicular direction, with py 
�kF /d�kF and
�
�0���kFd�−1/2�1. This makes the transport characteris-
tics of ballistic graphene-based devices sensitive to the geo-
metrical orientation of n-p junctions in them, and it is ca-
pable of generating a sizable magnetoresistance �MR� effect.

A nominal resistance, Rnp=1/agnp of a single, separately
taken n-p junction with the peripheral length a separating the
electron and hole gases with densities ne/h=kF

2 /� is deter-
mined by Eq. �3�. Whether or not the nominal junction resis-
tance contributes to the total resistance of a ballistic device
depends on how free carriers propagate in it. For example,
when an n-p junction, with the perimeter a=2�r, separates
two metallic Corbino contacts to the ballistic 2D electron/
hole gases shown in Fig. 2�a�, electrons emitted from the
inner contact with the radius b
r /��kFd reach the junction
at the incidence angle �
�0 and pass it without scattering.
As a result, the presence of the n-p junction does not affect
the Corbino resistance, unless an external magnetic field
changes the incidence angle to ��=r /rc��0, where
rc=kF�c /eB is the cyclotron radius in the ballistic region.20

This generates the MR,

R�B� = Rext +
f�B/B*�

agnp
,

where

f�0� = 0, f�1� � 1,

and

B* = ��c/e��kF/�r2d . �18�

FIG. 2. Ballistic MR devices with n-p junctions in graphene: �a�
Corbino geometry; �b� series of n-p-n junctions, with the illustra-
tion of trajectories of electrons transmitted by the first junction for
B=0 �left� and B�B� �right�; �c� three-terminal cavity.
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A strong MR effect can also be expected in a Hall-bar
sample with several parallel n-p-n junctions, Fig. 2�b�. The
energy-averaged21 transmission through the series of two
junctions, w2���= �w−1���+w−1��+r /rc�−1�−1 is determined
by the individual junction transmissions w��� and w��+ r

rc
�.

Here, we take into account that, due to the external magnetic
field, an electron transmitted by the first junction at the inci-
dence angle � would approach the second at the angle
��=�+ r

rc
, where r /rc=B /B* with B* defined in Eq. �18�. In

the absence of a field ��=�, and the transmitted particle
would also pass the second junction, as shown on the left-
hand side of Fig. 2�b�. If, due to a magnetic field, the angle
�� is sufficient for the particle to be reflected,20 �����0�, the
latter would return to the first junction along the path illus-
trated on the right in Fig. 2�b� and escape to the contact
where it came from. This would suppress the conductance of
the n-p-n junction down to the value-determined scattering
by the side edges of the sample. Having substituted w2���
�instead of w���� into the conductance per unit length of a
broad junction defined in Eq. �3�, we find the magnetocon-
ductance of the n-p-n junction,

gnpn�B� �
gnp

��



−�

� dx

ex2
+ e�x + B/B*�2

− 1
. �19�

A strongly selective quasiparticle transmission in Eqs. �2�
and �17� can also be used for creating ballistic cavity-type
structures in graphene, with nonlocal transport properties. In
a three-terminal “cavity” shown in Fig. 2�c�, a p-charging
gate would produce two parallel n-p junctions, so that bal-
listic electrons emitted from the contact 1 and transmitted by
the first junction would easily pass through the second and
reach contact 3. As a result, a bias voltage applied between
contacts 1 and 2 would generate current between contacts 1
and 3, thus giving rise to the trans-conductance G12

13 with a
strong magnetic field dependence,

G12
13�B� �

2e2

�h
�a2kF

d
f B

B*
� . �20�

In conclusion, we show that a smooth n-p junction in
graphene transmits only carriers approaching it in a perpen-
dicular direction �see Eq. �2��. On the basis of the predicted
selectivity of the n-p junction transmission, we propose a
mechanism for several moderate-field20 magnetoresistance
effects in ballistic n-p junctions microcircuits in graphene-
based transistors.
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