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Degeneracy breaking and intervalley scattering due to short-ranged impurities in

finite single-wall carbon nanotubes

Edward McCann and Vladimir I. Fal’ko

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom

We present a theoretical study of degeneracy breaking due to short-ranged impurities in finite,

single-wall, metallic carbon nanotubes. The effective mass model is used to describe the slowly

varying spatial envelope wavefunctions of spinless electrons near the Fermi level at two inequivalent

valleys (K-points) in terms of the four component Dirac equation for massless fermions, with the role

of spin assumed by pseudospin due to the relative amplitude of the wave function on the sublattice

atoms (“A” and “B”). Using boundary conditions at the ends of the tube that neither break valley

degeneracy nor mix pseudospin eigenvectors, we use degenerate perturbation theory to show that

the presence of impurities has two effects. Firstly, the position of the impurity with respect to the

spatial variation of the envelope standing waves results in a sinusoidal oscillation of energy level

shift as a function of energy. Secondly, the position of the impurity within the hexagonal graphite

unit cell produces a particular 4 × 4 matrix structure of the corresponding effective Hamiltonian.

The symmetry of this Hamiltonian with respect to pseudospin flip is related to degeneracy breaking

and, for an armchair tube, the symmetry with respect to mirror reflection in the nanotube axis is

related to pseudospin mixing.

I. INTRODUCTION

Much of the interest in carbon nanotubes has been motivated by the desire to develop new nanoscale electrical

devices [1, 2]. The electronic properties of nanotubes follow from the band structure of a two-dimensional sheet of

graphite which is a semi-metal, having a vanishing energy gap at the six corners, K-points, of the hexagonal first

Brillouin zone. A single-wall nanotube may be thought of as a graphene sheet rolled up to form a nanometre-diameter

cylinder. Periodicity around the circumference results in quantized transverse wavevectors leading to metallic or

semiconducting behaviour depending on whether the K-point wavevector K is an allowed wavevector.

A finite nanotube should possess discrete energy levels corresponding to standing waves typical of a confined

quantum particle. Evidence of discrete levels was seen in transport measurements [3, 4] a few years ago, followed by

the direct observation of sinusoidal standing wave patterns by scanning tunneling microscopy [5, 6] with wavevectors

corresponding to those near the K-point K. More recently, Coulomb blockade measurements on carbon nanotube

quantum dots [7, 8, 9] have seen varying degrees of evidence for the fourfold periodicity of shell filling that would be

in agreement with expectations based on the spin and valley (K-point) structure.

In this paper, we will consider the interplay between two sources of valley degeneracy breaking in a finite nanotube,

namely isolated impurities and the boundaries themselves. The aim is to show how the character of an impurity

determines the extent of valley degeneracy breaking, resulting in the possibility to observe either twofold or fourfold

periodicity of shell filling [9]. As far as boundaries are concerned, a number of authors [10, 11, 12, 13, 14, 15] have

modelled finite-length nanotubes in order to describe the atomic scale variation of standing waves patterns and the

opening of an energy gap displaying an oscillating dependence on the tube length. For impurities, theoretical studies

of open nanotubes by Ando and co-workers [16, 17, 18] have shown that short-ranged potentials (typical range smaller

than the lattice constant of graphite) produce back-scattering, but not long-ranged potentials. For an armchair tube,

it was demonstrated that impurities preserving mirror reflection in the nanotube axis do not mix the bonding π and

antibonding π∗ energy bands [18, 19, 20]. For closed nanotubes, a recent density-functional calculation [21] has shown

how a small number of defects may reduce the four-fold periodicity of shell filling to two-fold.

In the scanning tunneling microscopy measurements of Ref. [6] an additional slow spatial modulation of the standing

waves was observed. It was interpreted as being a beating envelope function with wavevector q, |q| ≪ |K|, resulting

from the interference of left and right moving waves with slightly different total wavevectors K ± q. The effective
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mass model [22, 23, 24, 25] provides an analytical description of the electronic structure near the K point where the

total wavevector is k = K + q and the dispersion relation is linear E = sv |q|, v is the Fermi velocity and s = ±1

for the conduction and valence band, respectively. For spinless electrons, the envelope wavefunction Ψ (q, r) has four

components corresponding to two inequivalent atomic sites in the hexagonal graphite lattice (“A” and “B”) and to

two inequivalent K-points in the hexagonal first Brillouin zone. The resulting eigenvalue equation for Ψ is the massless

Dirac equation written in the “chiral” or “spinor” representation,

− ivα.∇Ψ = EΨ; α =

(
σ 0

0 −σ

)
; (1)

σ = eiησz/2 (σx ı̂+ σy ̂) e
−iησz/2,

where the role of spin is assumed by the relative amplitudes on the A and B atomic sites (“pseudospin”): σ is a vector

in the (x, y) plane rotated by the chiral angle η of the tube. Also, v =
(√

3/2
)
aγ is the Fermi velocity, a is the lattice

constant of graphite and γ is the nearest neighbour transfer integral.

Since we are interested in perturbations of a clean nanotube that may destroy valley degeneracy, we must identify

the symmetry that preserves degeneracy. The pseudospin of a 2D graphite sheet does not transform in the same way

as real spin because certain transformations result in a swapping of the orientation of A and B atoms. This leads us

to identify an operator ρz that flips pseudospin but commutes with the clean effective Hamiltonian, Eq. (1),

ρz =

(
0 iσz

iσz 0

)
. (2)

In general, the two degenerate eigenvectors {Ψ1,Ψ2} corresponding to the two non-equivalent K-points of the Dirac

equation for a clean, metallic nanotube may be labelled using the component of pseudospin along the tube axis Σa or

using pseudo-helicity λ. Therefore, the pseudospin-flip operator ρz relates the degenerate eigenvectors to each other,

ρzΨ1 → Ψ2. We may make two statements about the consequence of the symmetry of a particular perturbation δH .

The first is that perturbations that are symmetric in the pseudospin-flip operator ρ−1
z δHρz = δH preserve pseudospin

and do not break valley degeneracy. Secondly, a perturbation that breaks pseudospin-flip symmetry, ρ−1
z δHρz 6= δH ,

but is still symmetric with respect to the operator Σa measuring pseudospin Σ−1
a δHΣa = δH , will break degeneracy

without mixing the pseudospin eigenvectors. Since pseudospin is the relative amplitude of the wavefunction on the

A and B atomic sites, a given perturbation must differentiate between adjacent atoms in order to break pseudospin

symmetry. In other words, the influence of the perturbation must vary spatially on the scale of the graphite lattice

constant a: such a perturbation is described as being short-ranged.

We will investigate how a perturbing short-range potential breaks the inter-valley degeneracy. The position of

a potential within the hexagonal graphite unit cell will produce a specific 4 × 4 matrix structure of the resulting

effective Hamiltonian, and the symmetry of the matrix will determine the extent of degeneracy breaking. As the

ultimate limit of a short-range potential, we consider a delta function potential because it simplifies the calculations

and the resulting analysis. We would like to stress that our intent is not to produce exact quantitative results that

describe the influence of impurities, but to characterise possible symmetry breaking properties. The positions of the

potential we consider are shown with relation to the hexagonal graphite unit cell in Fig. 1. They are near an A type

atomic site, labelled A in the figure, near a B type atomic site, labelled B, near the centre of the unit cell, labelled C,

or near the half-way point between neighbouring atoms, labelled D.

The paper is organised as follows. In Section II, the effective mass model leading to the Dirac equation is briefly

described along with a discussion of its symmetry properties. Section III is an introduction to the boundary conditions

of a closed carbon nanotube and the resulting energy spectrum of a clean nanotube is calculated. In Section IV, we use

degenerate perturbation theory to show how valley degeneracy is broken by a short-range potential and to examine

the relationship between the position of the potential and symmetry. In Appendix B we give a brief account of a

non-perturbative calculation of the energy spectrum for the example of an impurity exactly on an atomic site.



3

y’

x’

y

x

χ η
χ−η

δR

A1

B1

C

A2

A3

B3 B2

D1

D2

D3D4

D5

D6

FIG. 1: The positions with respect to the graphite unit cell of the perturbing potential are labelled as A, B, C, and D. Carbon

atomic positions are at the six corners of the hexagon, there are three A atomic positions {A1, A2, A3} and three B atomic

positions {B1, B2, B3}. We also consider the potential to be near the centre of the unit cell (C) or at one of six positions

half-way between neighbouring atoms (D1 to D6). An additional small deviation δR of the potential position is shown (greatly

exaggerated) for the C position, with direction described by angle χ in the nanotube coordinates (x, y). The figure has chiral

angle η = π/6 corresponding to an armchair tube.

II. SYMMETRY PROPERTIES OF THE EFFECTIVE MASS MODEL

In the effective mass model of two-dimensional graphite [22], the total wavefunction Ψtot is written as a linear

combination of four components m = {1, 2, 3, 4} corresponding to two K-points µ = {1, 2} and π-type atomic orbitals

ϕj(r − Rj) on two non-equivalent atomic sites j = {A,B} in the unit cell,

Ψtot (r) =

4∑

m=1

{
Φ(0)

m (r) − Gm (r) .∇ + . . .
}
ψm (r) , (3)

where

Φ(0)
m (r) =

1√
N

N∑

Rj

eiKµ.R
j ϕj(r − Rj), (4)

Gm (r) =
1√
N

N∑

Rj

eiKµ.R
j ϕj(r − Rj)(r − Rj), (5)

are Bloch type functions constructed from the atomic orbitals, Rj is the position of an atom in real space and the

summation is over the number of unit cells N ≫ 1. The functions ψm (r) are components of the envelope function

Ψ (q, r). Substituting this expression for Ψtot into the Schrödinger equation and integrating with respect to fast

degrees of freedom that vary on the scale of the unit cell leads to the Dirac equation Eq.(1) for the envelope function

Ψ. We label the two non-equivalent K-points as K and K̃ with wavevectors K = (±4π/3a, 0), and the components of

Ψ are written in the order KA, KB, K̃B, K̃A. The appearance of the chiral angle of the tube η in the Dirac equation

shows that the axes of the (x′, y′) “graphite” coordinate system have been rotated to be transverse and parallel to

the tube axis, labelled (x, y) in Fig. 1. Applying periodic boundary conditions to the wavefunction Ψtot, Eq.(3), in

the direction transverse to the nanotube axis produces a condition for the envelope function Ψ that leads to metallic

or semiconducting behaviour depending on whether the transverse component of wavevector q is allowed to be zero

[23, 24].

In order to highlight the separate K-point space and AB space structure present in carbon nanotubes we adopt a

matrix direct product notation using {σx, σy , σz, Iσ} for 2× 2 Pauli matrices and the unit matrix that operate within

a block (‘AB space’) and {Πx,Πy,Πz, IΠ} for 2× 2 Pauli matrices and the unit matrix that operate in K-point space.

For example, the operator α may be written as α = Πz ⊗ σ, and the usual operators for the reflection of real spin in
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a plane that reverses the Cartesian coordinate n = x, y or z are ρn = iΠx ⊗ eiησz/2σne
−iησz/2. As mentioned in the

Introduction, the pseudospin of a 2D graphite sheet does not transform in the same way as real spin because certain

transformations result in a swapping of the orientation of A and B atoms. This additional operation is described

by the “pseudospin-flip” operator, Eq. (2), ρz = Πx ⊗ iσz that corresponds to a reflection of real spin in the (x, y)

plane. For example, an active rotation of the 2D graphite sheet anticlockwise by π/3 about the perpendicular z axis,

Ψ (r′) = C6Ψ (r), is described by C6 = ρzR(π/3) = Πx ⊗ exp ((2πi/3)σz) where R(θ) = IΠ ⊗ exp ((iθ/2)σz) is a

continuous rotation operator.

We consider the nanotube axis to be parallel to the unit vector n̂ = (sin η, cos η, 0) in the (x′, y′) graphite coordinates,

so that it points along the y-axis in the (x, y) nanotube coordinates, Fig. (1). In this rotated coordinate system, the

component of the pseudospin operator along the positive y-axis is Σa = IΠ⊗eiησz/2σye
−iησz/2 and the pseudo-helicity

operator is λ = |q|−1
IΠ ⊗ eiησz/2 (−iσy∂y) e−iησz/2. For an armchair tube, a mirror reflection across the nanotube

axis (the y-axis in Fig. (1)) is accompanied by an exchange of A and B atomic positions so that it is described not by

operator ρx but by the combination ρzρx representing reflection of real spin accompainied by an additional spin-flip.

It turns out that Σa = iρzρx, so we may draw the conclusion that, for an armchair tube, the operator measuring

pseudospin also represents a mirror reflection across the nanotube axis. The situation is different for a zigzag tube

because reflection across the nanotube axis (the y′-axis in Fig. (1)) is not accompanied by an exchange of A and B

atomic positions so that it is described by operator ρx, not Σa = iρzρx. This means that potential positions that

are symmetric with respect to mirror reflection across the axis of an armchair tube, such as positions D1 and D4 in

Fig. (1), will also be symmetric with respect to the pseudospin operator and will break degeneracy without mixing

the pseudospin eigenvectors. Since pseudospin is related to the underlying molecular orbital state [25], this statement

is equivalent to saying that impurities preserving mirror reflection in the nanotube axis do not result in mixing of

the bonding π and antibonding π∗ energy bands [18, 19, 20, 26, 27]. On the other hand, potential positions that are

symmetric with respect to mirror reflection across the axis of a zigzag tube, such as positions A3 and B1 in Fig. (1),

will not be symmetric with respect to the pseudospin operator.

III. SINGLE PARTICLE ENERGY SPECTRUM OF A CLOSED NANOTUBE

In this section we calculate the form of non-interacting single particle standing waves and the corresponding energy

spectrum in a closed nanotube. For simplicity, we will consider only metallic nanotubes with arbitrary chiral angle

η. We suppose that the x axis is perpendicular to the tube axis and we consider only the zero momentum transverse

mode so that |E| < 2πv/Lc where Lc = |Ch| is the circumference. The Dirac equation is diagonal in K-point space,

so that, for an open nanotube, there are two right moving (Ψ
(R)
K and Ψ

(R)

K̃
) and two left moving (Ψ

(L)
K and Ψ

(L)

K̃
) plane

wave solutions:

Ψ
(R)
K = Aeiqy




1

ise−iη

0

0


 ; Ψ

(L)
K = Be−iqy




1

−ise−iη

0

0


 ;

Ψ
(R)

K̃
= Ceiqy




0

0

1

−ise−iη


 ; Ψ

(L)

K̃
= De−iqy




0

0

1

ise−iη


 ,

where A, B, C and D are arbitrary constants, q is the wavevector along the tube and we consider q ≥ 0 and E = svq,

s = ±1. The solutions Ψ
(R)
K and Ψ

(L)

K̃
are eigenvectors of pseudospin component Σa with eigenvalue +s, whereas the

solutions Ψ
(R)

K̃
and Ψ

(L)
K have eigenvalue −s. Also, the solutions Ψ

(R)
K and Ψ

(L)
K are eigenvectors of pseudo-helicity λ

with eigenvalue +s, whereas the solutions Ψ
(R)

K̃
and Ψ

(L)

K̃
have eigenvalue −s.

Note that the Hamiltonian H2d given in Eq. (1) is two dimensional, but, by taking into account only the lowest
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transverse mode, it becomes one dimensional H1d in a metallic tube:

H2d = vΠz ⊗ eiησz/2 (−iσx∂x − iσy∂y) e−iησz/2, (6)

H1d = vΠz ⊗ eiησz/2 (−iσy∂y) e−iησz/2, (7)

The pseudospin part of the one dimensional Hamiltonian H1d may be diagonalised using a unitary transformation,

H̃1d = U−1H1dU [28]:

U =
IΠ√

2
⊗ eiησz/2 (σy + σz) e

−iησz/2, (8)

H̃1d = vΠz ⊗ (−iσz∂y) , (9)

and the corresponding eigenvectors Ψ̃
(L/R)

K/K̃
= U−1Ψ

(L/R)

K/K̃
are eigenvectors of σz in pseudospin space so they have only

one non-zero component out of four.

Now we will briefly describe the effective boundary conditions for the envelope function Ψ in a closed carbon

nanotube, and refer the reader to Ref. [15] for more details. There it was shown that energy independent hard wall

boundary conditions for the Dirac equation may be expressed in general terms as

Ψ = MΨ; M2 = 1; {nB.α,M} = 0, (10)

where M is an Hermitian, unitary 4 × 4 matrix M2 = 1 with the constraint that it anticommutes with the operator

nB.α, proportional to the component of the current operator normal to the interface, nB is the unit vector normal

to the interface. There are four possible linear combinations of matrices satisfying these constraints on M , which,

assuming nB is a vector confined to the (x, y) plane, may be written in terms of a small number of arbitrary parameters:

M1 = cosΛ (IΠ ⊗ n1.σ) + sin Λ (Πz ⊗ n2.σ) , (11)

M2 = cosΥ (ν1.Π⊗ Iσ) + sin Υ (ν2.Π⊗ nB.σ) , (12)

M3 = cosΩ (ν2.Π⊗ nB.σ) + sinΩ (IΠ ⊗ n1.σ) , (13)

M4 = cosΘ (ν1.Π⊗ Iσ) + sin Θ (Πz ⊗ n2.σ) , (14)

where the angles Λ,Υ,Θ and Ω are arbitrary, n1 and n2 are three-dimensional space-like vectors satisfying the con-

straints n1.nB = n2.nB = n1.n2 = 0, and ν1 and ν2 are two-dimensional (confined to the (x, y) plane) space-like

vectors satisfying the constraint ν1.ν2 = 0.

In principle, there are different ways of combining the right and left moving plane waves in order to create standing

waves. The first possibility is that waves at the same K-point combine, namely Ψ
(R)
K and Ψ

(L)
K form a standing wave

with pseudo-helicity eigenvalue +s, and Ψ
(R)

K̃
and Ψ

(L)

K̃
form a standing wave with pseudo-helicity eigenvalue −s.

This situation is realised by the matrix M1, Eq.(11), because it is diagonal in K-point space. A second possibility is

that waves from opposite K-points combine, namely Ψ
(R)
K and Ψ

(L)

K̃
form a standing wave with pseudospin component

eigenvalue +s, and Ψ
(R)

K̃
and Ψ

(L)
K form a standing wave with pseudospin component eigenvalue −s. This situation is

realised by the matrix M2, Eq.(12), because it is off-diagonal in K-point space. A third possibility is a combination of

the previous two, with waves scattered back at the boundary into a mixture of both of the K-points. This situation is

realised by the matrices M3, Eq.(13), and M4, Eq.(14), because they have both diagonal and off-diagonal in K-point

space parts.

In the graphite coordinate system, we define the normal to the boundary nB in terms of the chiral angle of the

tube η and we choose two mutually orthogonal 3D vectors n1 and n2, and two additional orthogonal 2D vectors ν1
and ν2:

nB = (sin η, cos η, 0),

n1 = (cos η sin ζ,− sin η sin ζ, cos ζ) ,

n2 = (cos η cos ζ,− sin η cos ζ,− sin ζ) ,

ν1 = (cos ξ, sin ξ, 0) ,

ν2 = (− sin ξ, cos ξ, 0) ,
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This introduces two new mixing angles, ζ and ξ: the arbitrary parameters contained within the boundary conditions

describe the amount of mixing between different discrete symmetries. Table 1 shows a summary of the discrete

symmetries of the boundary conditions in terms of the orientation of the vectors n1, n2, ν1 and ν2. In addition to ρz

and Σa we consider parity P = Πx⊗Iσ, corresponding to a rotation by π about the z axis (x→ −x and y → −y), and

charge conjugation (C) that involves the complex conjugation operator combined with C = −iΠy ⊗ σy. The angles ζ

and ξ mix terms with different symmetry with respect to ρz: ζ = 0 and ξ = 0 correspond to evenness with respect

to ρz whereas ζ = π/2 and ξ = π/2 correspond to oddness. Since pseudospin and/or pseudo-helicity label different

states at the same energy, values of ζ and ξ not equal to multiples of π/2 will lead to broken degeneracy. The angles

Λ,Υ,Θ and Ω mix different symmetries with respect to combinations of P , C and ρz.

M ρz P C Σa

IΠ ⊗ n1.σ n1 = (̂ı, ̂) ζ = π
2 −1 +1 +1 −1

n1 = k̂ ζ = 0 +1 +1 +1 −1

Πz ⊗ n2.σ n2 = (̂ı, ̂) ζ = 0 +1 −1 −1 −1

n2 = k̂ ζ = π
2 −1 −1 −1 −1

ν1.Π ⊗ Iσ ν1 = ı̂ ξ = 0 +1 +1 +1 +1

ν1 = ̂ ξ = π
2 −1 −1 +1 +1

ν2.Π⊗ nB.σ ν2 = −ı̂ ξ = π
2 −1 +1 −1 +1

ν2 = ̂ ξ = 0 +1 −1 −1 +1

Table 1: Discrete symmetries of the boundary conditions

As representative examples, we consider below the boundary conditions M1 (diagonal) and M2 (off-diagonal)

separately. We will calculate the form of the standing waves and the energy spectrum for a nanotube with the same

type of boundary condition on the right (at y = +L/2) and on the left (at y = −L/2). We introduce an index

u = {R,L} ≡ ±1 to label the right and left hand side so that the normal to the boundary, defined with respect to the

graphite coordinate system, is nB = u(sin η, cos η, 0), and we take into account the possibility of different mixing angles,

Λu,Υu,Θu and Ωu, and vectors n1 = (u cos η sin ζu,−u sin η sin ζu, cos ζu), n2 = (u cos η cos ζu,−u sinη cos ζu,− sin ζu),

ν1 = (cos ξu, sin ξu, 0) and ν2 = (− sin ξu, cos ξu, 0).

A. Diagonal boundary conditions

With the above definitions of the mixing angles, the boundary condition Ψ = M1Ψ produces the following relations

between the components of the wavefunction at the interface:

u sin (ζu + Λu) e−iηψAK − [1 + cos (ζu + Λu)]ψBK = 0, (15)

u sin (ζu − Λu) e+iηψAK̃ − [1 − cos (ζu − Λu)]ψBK̃ = 0. (16)

The equations are diagonal in K-point space so do not describe intervalley scattering. With these boundary

conditions on the right (at y = +L/2) and on the left (at y = −L/2), standing waves Ψ1 corresponding to K-point

K are created from combining Ψ
(R)
K and Ψ

(L)
K and are labelled by pseudo-helicity λ = +s, and standing waves Ψ2
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FIG. 2: Plot of the modulus squared wavefunction |Ψ1|
2 of the lowest states for diagonal boundary conditions: the solid lines

show the second component |ψBK |2 and the dashed lines show the first component |ψAK |2. The lowest states p1 = 0, 1, 2, 3

are shown from top to bottom. Values of the mixing angles are taken to be ζm = Λm = 0 so that the boundary conditions are

satisfied by ψBK = 0 at the ends of the nanotube y = ±L/2.

corresponding to K-point K̃ are created from Ψ
(R)

K̃
and Ψ

(L)

K̃
and have label λ = −s:

Ψ1 = N




eiq1y + (−1)p1eisζm+isΛm−iq1y

ise−iη
[
eiq1y − (−1)p1eisζm+isΛm−iq1y

]

0

0


 , (17)

Ψ2 = N




0

0

eiq2y + (−1)p2e−isζm+isΛm−iq2y

−ise−iη
[
eiq2y − (−1)p2e−isζm+isΛm−iq2y

]


 , (18)

where the normalisation factor is N = 1/(2
√
LcL) and the wavevectors are

q1 = (−sζp − sΛp + πp1) /L, (19)

q2 = (+sζp − sΛp + πp2) /L. (20)

Here {p1, p2} are integers such that q1(2) ≥ 0, ζp = (ζR + ζL)/2, ζm = (ζR − ζL)/2, Λp = (ΛR + ΛL)/2, and

Λm = (ΛR − ΛL)/2. Using E = svq shows that the mixing angles ζR and ζL break K-point degeneracy whereas ΛR

and ΛL break electron-hole symmetry.

In order to understand the form of the wavefunctions, we set all mixing angles equal to zero ζp = ζm = Λp = Λm = 0.

In this case the boundary conditions simplify to ψBK = ψBK̃ = 0 at both ends of the nanotube, and the components

ψBK and ψBK̃ have the form of standing wave solutions of the Schrödinger equation for a confined particle, namely

successive cosine and sine functions. The component ψBK is shown explicitly in Fig. 2 (solid lines) and the component

ψAK , which is proportional to the derivative of ψBK , is shown by dashed lines.

B. Off-diagonal boundary conditions

The boundary condition Ψ = M2Ψ is equivalent to the following relations between the components of the envelope

wavefunction at the interface:

ψAK + u sinΥue
+iη−iξuψAK̃ − cosΥue

−iξuψBK̃ = 0, (21)

ψBK − u sinΥue
−iη−iξuψBK̃ − cosΥue

−iξuψAK̃ = 0. (22)
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FIG. 3: Relative amplitude of the wavefunction Ψtot,1(r) ∝ cos (K.r ∓ π/6) determined on the atomic sites, following Fig. 1(d)

in Ref. [10]. Dashed lines, labelled ‘scan A’ and ‘scan B’, are parallel to the tube axis.

The equations are off-diagonal in K space so describe intervalley scattering. We label the standing waves as Ψ1 with

pseudospin eigenvalue Σ = +s, created from combining Ψ
(R)
K and Ψ

(L)

K̃
, and Ψ2 with pseudospin eigenvalue Σ = −s,

created from combining Ψ
(R)

K̃
and Ψ

(L)
K . We find that

Ψ1 = N




eiq1y

ise−iη+iq1y

(−1)p1eisΥm+iξp−iq1y

is(−1)p1e−iη+isΥm+iξp−iq1y


 , (23)

Ψ2 = N




(−1)p2eisΥm−iξp−iq2y

−is(−1)p2e−iη+isΥm−iξp−iq2y

eiq2y

−ise−iη+iq2y


 , (24)

where the normalisation factor is N = 1/(2
√
LcL) and the wavevectors are

q1 = (−sΥp − ξm + πp1) /L, (25)

q2 = (−sΥp + ξm + πp2) /L. (26)

Here {p1, p2} are integers such that q1(2) ≥ 0, Υp = (ΥR + ΥL)/2, Υm = (ΥR − ΥL)/2, ξp = (ξR + ξL)/2, and

ξm = (ξR − ξL)/2. The angle ξm breaks degeneracy whereas Υp breaks electron-hole symmetry.

The physical relevance of the envelope wavefunctions may be understood by examining the total wavefunction Ψtot,

Eq. (3), that is constructed from linear combinations of products of envelope wavefunctions with Bloch functions that

vary rapidly in space on the atomic scale. If we only take into account the first term in the gradient expansion, Eq. (3),

and the contribution from a single atomic orbital at r = RA or RB, then Ψtot,1(2) is the sum of two components of

Ψ1(2), each multiplied by an additional oscillating factor exp(iKµ.Rj
). For example, if we set Υm = ξp = 0 for an

armchair tube η = π/6 then

Ψtot,1(r) ∝
{

cos (q1y + K.r ∓ π/6) : s(−1)p1 = +1

sin (q1y + K.r ∓ π/6) : s(−1)p1 = −1

Ψtot,2(r) ∝
{

sin (q2y − K.r ± π/6) : s(−1)p2 = +1

cos (q2y − K.r ± π/6) : s(−1)p2 = −1

where the upper sign refers to r = RA and the lower to r = RB. These equations reproduce the atomic scale

variation of standing wave patterns obtained by Rubio et al [10] with an additional modulation due to the wavevector

q1(2). Fig. 3 is a schematic of the wavefunction amplitude Ψtot,1 ∝ cos (K.r ∓ π/6) determined on the atomic sites,

following Fig. 1(d) in Ref. [10]. Figs. 4 and 5 show plots of the modulus squared wavefunction for the four lowest

states above the Fermi level, evaluated along two different lines parallel to the tube axis, labelled ‘scan A’ and ‘scan



9

0.0

1.0

0.0

1.0

0.0

1.0

−0.5 0.0 0.5
y/L

0.0

1.0

FIG. 4: Plot of the modulus squared total wavefunction |Ψtot|
2 (arbitrary units) for off-diagonal boundary conditions that

break valley degeneracy. The wavefunction is evaluated along line A parallel to the axis of an armchair nanotube η = π/6,

length L = 50a. The four lowest energy states above the Fermi level are shown from top to bottom. Parameter values are

s = 1, ζm = π/4, Υp = −π/2, and Υm = ζp = 0.
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FIG. 5: Plot of the modulus squared total wavefunction |Ψtot|
2 (arbitrary units) for off-diagonal boundary conditions that

break valley degeneracy. The wavefunction is evaluated along line B parallel to the axis of an armchair nanotube η = π/6,

length L = 50a. The four lowest energy states above the Fermi level are shown from top to bottom. Parameter values are

s = 1, ζm = π/4, Υp = −π/2, and Υm = ζp = 0.

B’ in Fig. 3, respectively. Fig. 4, scan A, is for a line through the middle of bonds making an angle with the tube

axis and it tends to show a pair of equidistant peaks within every Fermi wavelength whereas Fig. 5, scan B, is for a

line through bonds perpendicular to the tube axis and it tends to show peak-pairing [10]. In order to ensure that the

successive wavefunctions are not degenerate, we take ξm = π/4 and Υp = −π/2 so that the four lowest states above

the Fermi level have energies E = πv/(4L), 3πv/(4L), 5πv/(4L), 7πv/(4L) with wavevector indices p1 = 0, p2 = 0,

p1 = 1, p2 = 1, and respective correspondence to the wavefunctions drawn schematically in Fig. 1 (d), (a), (c), (b) of

Ref. [10]. As well as a different long range modulation, due to different values of q1(2), the successive wavefunctions

show a distinct even/odd variation due to the different forms of pseudospin eigenvectors Ψ1 and Ψ2.
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IV. DEGENERATE PERTURBATION THEORY IN THE PRESENCE OF AN IMPURITY

In this section we derive 4×4 Hamiltonians of the effective mass model describing a short range potential at different

positions R in the nanotube wall. Each effective Hamiltonian has a different structure, depending on the location of

the potential with respect to the hexagonal graphite unit cell. The following subsections describe different impurity

positions as shown in Fig. 1 and summarised in Table 2.

Impurity position with respect Label in Discussed in

to the graphite unit cell Fig.1 subsection:

atomic site Ai, Bi IVA

centre of unit cell C IVB

half-way along a bond Di IVC

Table 2: Impurity positions discussed in the following subsections

As well as degeneracy arising from the real spin of electrons, it was shown in the previous section that the energy

levels of a clean metallic nanotube may be degenerate due to pseudospin symmetry, depending on the symmetry of

the boundary conditions. Now we would like to concentrate on the role of an additional perturbing potential, so we

will consider the case of degenerate levels in the clean nanotube, and use degenerate perturbation theory to calculate

the level splitting due to the presence of the potential Hamiltonian. The perturbation theory takes into account the

interaction of the potential with the degenerate levels, but neglects the effect of higher levels, so it is valid for energy

level shifts that are smaller than the spacing ∆E = πv/L between pairs of unperturbed levels. As before, we suppose

that the x axis is perpendicular to the tube axis and we consider only the zero momentum transverse mode so that

|E| < 2πv/Lc where Lc = |Ch| is the circumference. We will use off-diagonal boundary conditions M2 because they

correspond to the usual situation in metallic nanotubes [15], so the unperturbed degenerate wavefunctions are Ψ1 and

Ψ2, Eqs. (23) and (24), respectively, with ξR = ξL = 0 corresponding to pseudospin symmetry preserving boundaries,

q1 = q2 ≡ q, p1 = p2 ≡ p, and q = (πp− sΥp)/L.

As explained in Section II, we perform a gradient expansion of the total wavefunction, Eq. (3), and keep the lowest

order term. Then, we calculate matrix elements Vmn =
∫
drΨ∗

mδHΨn between the clean wavefunctions Eqs. (23)

and (24) and the effective Hamiltonians in order to apply degenerate perturbation theory. The matrix elements for a

general effective Hamiltonian with arbitrary coefficients are given in Appendix A: a particular position of the potential

will define the values of the arbitrary coefficients. The positions of the potential we consider are shown with relation

to the hexagonal graphite unit cell in Fig. 1. They are near an A type atomic site, labelled A in the figure, near

a B type atomic site, labelled B, near the centre of the unit cell, labelled C, or near the half-way point between

neighbouring atoms, labelled D. Furthermore, we introduce a small additional deviation of the potential position δR,

the orientation of which is shown in the figure for the potential near the unit cell centre. The labels (x′, y′) represent

the coordinate axes of the graphite sheet, whereas labels (x, y) represent the coordinate axes of the nanotube, rotated

by the chiral angle η. The nanotube axis is parallel to the y direction, and the direction of the deviation of the

potential position is described by angle χ in the nanotube coordinates δR = (δR cosχ, δR sinχ) ≡ (δX, δY ).

A. Potential near an atomic site

The origin of real space coordinates is placed in the centre of the Wigner-Seitz unit cell and the perturbative

potential is placed at position R = R0 + δR near an arbitrary atomic site. For example it may be near an A site,

Fig. 1, so that R0 = RA represents the exact position of the A atom, and δR is a small additional deviation from it.

In deriving the effective mass model Hamiltonian, we take into account nearest neighbour interactions: within nearest

neighbour distance d = a/
√

3 of the perturbative potential, there is one A atom and three B atoms. In addition to
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the gradient expansion, we perform an expansion in the small additional deviation of the potential position δR in

order to generate a number of effective Hamiltonians with different symmetries.

The effective Hamiltonian δH is a 4×4 Hamiltonian with matrix elements involving the Bloch function Φ
(0)
m , Eq. (4),

and a short ranged potential δH (r) of strength U :

δHnm =

∫
ddrΦ(0)∗

n (r) δH (r) Φ(0)
m (r) (27)

Integration with respect to fast degrees of freedom that vary on the scale of the unit cell produces a product of

Bloch functions Φ
(0)
m evaluated at the potential position and a delta function representing the fact that the envelope

wavefunctions interact with a localised potential of scale less than the graphite lattice constant a:

δHnm ≡ vaUL
dδ (r− R)Φ(0)∗

n (R)Φ(0)
m (R) (28)

Here va is the volume of the graphite unit cell. There is a strong dependence of the phase factors contained within the

Bloch functions Φ
(0)
m on the position of the potential within the graphite unit cell. The Bloch functions also depend

on π-type atomic orbitals ϕj on the non-equivalent atomic sites j = {A,B} in the unit cell. Since we consider the

perturbative potential to be in the same plane as the carbon atoms, we only need to describe the behaviour of the

atomic orbitals in the (x, y) coordinates. They are radially symmetric in the plane and for simplicity we model them

as ϕA/B(r) ≡ ϕ(r) = ϕ0 exp(−|r|/λ) where λ ∼ a/
√

3.

For the potential exactly on an A site, δR = 0, the effective Hamiltonian is

δHA = v2
aϕ

2(0)Uδ (r − R)




1 0 0 e−iκ

0 0 0 0

0 0 0 0

e+iκ 0 0 1


 , (29)

where κ is a phase factor associated with intervalley scattering at the impurity κ = R0.(K − K̃). As expected for a

potential on an atomic site, this Hamiltonian breaks pseudospin-flip symmetry δHA 6= ρ−1
z δHAρz. For completeness,

we note that the equivalent effective Hamiltonian for an impurity near a B site, Fig. 1, is

δHB = v2
aϕ

2(0)Uδ (r− R)




0 0 0 0

0 1 e−iκ 0

0 e+iκ 1 0

0 0 0 0


 . (30)

Applying the general results for matrix elements given in Appendix A to the effective Hamiltonians δHA/B, we find

that V12V21 = V11V22 so that the energy level shifts are δE′ = 0 and δE′′ = V11 + V22. In terms of the model

parameters,

δE′′ =
v2

aϕ
2(0)U

LcL
[1 + as(−1)p cos (κ+ aη) sin (2qY0 − sΥm)] , (31)

where q = (πp − sΥp)/L and −L/2 < Y0 < L/2 is the coordinate of the perturbative potential along the nanotube

axis. Here the factor a = ±1 is used to distinguish between the case of the potential being near an A site a = 1 or near

a B site a = −1. There is an oscillating dependence of the energy level shift on the index p of the clean energy levels

that has a period equal to 1/(Y0/L). In terms of energy, and the spacing of pairs of degenerate levels ∆E = πv/L, the

period is ∆E/(Y0/L) = πv/Y0. Fig. 6 shows the splitting of the two levels as a function of the energy for two different

potential positions. The upper curve is for Y0 = 0.025L (potential is one twentieth of the way from the centre of the

nanotube to the end), and shows an oscillating pattern with period 40, whereas the lower curve is for Y0 = 0.125L

(potential is a quarter of the way from the centre of the nanotube to the end), and shows an oscillating pattern with

period 8.

The degenerate perturbation theory produces two new zero-order wavefunctions that are linear combinations of the

original ones. We use them to plot the corresponding modulus squared total wavefunctions |Ψtot|2 near the Fermi
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FIG. 6: Splitting δE′′−δE′ of the pairs of degenerate energy levels of a clean nanotube Eq. (31) due to the effective Hamiltonian

δHA of a perturbative potential on an A atomic site. The symbols show the energy shift as a function of the energy of the

unperturbed levels, solid lines are a guide for the eye. The upper curve is for the potential at Y0 = 0.025L (potential is one

twentieth of the way from the centre of the nanotube to the end), lower curve is for Y0 = 0.125L (potential is a quarter of the

way from the centre of the nanotube to the end). UA = v2

aϕ
2(0)U and parameter values are s = 1, κ = 2π/3, η = π/6, and

Υp = Υm = 0.
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FIG. 7: Plot of the modulus squared total wavefunctions |Ψtot|
2 (arbitrary units) at the Fermi level (q = 0) in the presence of

an impurity on an atomic site, evaluated using degenerate perturbation theory. The wavefunctions are evaluated along line B

parallel to the axis of an armchair nanotube η = π/6, length L = 50a. The standing wave corresponding to δE = 0 is shown

on top, that corresponding to δE = V11 + V22 is below. Parameter values are s = 1, p = 0, and Υp = Υm = ζp = ζm = 0.

level in Fig. 7. The special case of q = 0 is considered, where the long-range variation due to the envelope function is

absent. The top panel shows the wavefunction corresponding to δE = 0, Ψ′

1 ∝ Ψ1 − (V11/V12)Ψ2, that has a matrix

element with the effective Hamiltonian equal to zero V ′

11 =
∫
drΨ′∗

1 δHΨ′

1 = 0. This wavefunction is zero on every

third A site having the same phase factor κ as the impurity site. The lower panel in Fig. 7 shows the wavefunction

corresponding to δE = V11 + V22, Ψ′

2 ∝ Ψ1 + (V22/V12)Ψ2 that has a non-zero matrix element with the effective

Hamiltonian. It has a sharp peak on every third A site where the other standing wave is zero.

The effective Hamiltonians Eqs. (29) and (30) for a potential exactly on an atomic site break axis reflection sym-

metry. In order to demonstrate the role of symmetry, we take the sum of Hamiltonians arising from potentials on

adjacent A and B atoms with the same component along the tube axis: for example, positions A1 and B1 in Fig. 1.
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FIG. 8: Splitting δE′′−δE′ of the pairs of degenerate energy levels of a clean nanotube Eq. (35) due to the effective Hamiltonian

δH ′

A of a perturbative potential with a first order deviation δR from an A atomic site. The symbols show the splitting as

a function of the energy of the unperturbed levels, lines are a guide for the eye. The upper curve is for the potential at

Y0 = 0.025L (potential is one twentieth of the way from the centre of the nanotube to the end), lower curve is for Y0 = 0.125L

(potential is a quarter of the way from the centre of the nanotube to the end). Parameter values are s = 1, κ = 2π/3, η = π/6,

Υp = Υm = 0, and the angle of deviation of the potential is χ = π/4.

In this case the Hamiltonian is

δHA + δHB = v2
aϕ

2(0)Uδ (r− R)




1 0 0 e−iκ

0 1 e−iβ 0

0 e+iβ 1 0

e+iκ 0 0 1


 , (32)

where κ = RA.(K− K̃) and β = RB.(K − K̃). We find that

V12V21 ∝ [cos (κ+ η) + cos (β − η)]
2
,

(V11 − V22)
2 ∝ [sin (κ+ η) − sin (β − η)]2 .

For the positions A1 and B1 in Fig. 1, the phase factors are κ = 2π/3 and β = 0 in which case the Hamiltonian

δHA1 + δHB1 preserves axis reflection symmetry Σ−1
a δHΣa = δH and V12V21 = 0 for an armchair tube η = π/6.

There is no mixing of the pseudospin eigenfunctions, but degeneracy is still broken V11 − V22 6= 0. Alternatively,

using the unitary transformation U , Eq. (8), to change to the system where the clean wavefunctions are eigenvalues

of σz , it is possible to produce a matrix that has no off-diagonal spin parts and clearly does not mix the pseudospin

eigenfunctions:

U−1 (δHA1 + δHB1)U = v2
aϕ

2(0)Uδ (r − R)




1 0 e−πi/3 0

0 1 0 e2πi/3

eπi/3 0 1 0

0 e−2πi/3 0 1


 . (33)

Returning to a single impurity potential on an atomic site, and taking into account first order terms in the deviation

δR of the potential position, we find an effective Hamiltonian with a different structure:

δH ′

A/B = U ′

A/Bδ (r − R)




0 iae−iχ̃ −ieiaχ̃−iκ 0

−iae+iχ̃ 0 0 −ieiaχ̃−iκ

ie−iaχ̃+iκ 0 0 iae−iχ̃

0 ie−iaχ̃+iκ −iae+iχ̃ 0


 , (34)



14

where U ′

A/B = 3 |δR| e−d/λv2
aϕ

2(|δR|)U/2λ and χ̃ = χ−η is the angle of the deviation δR in the graphite coordinates

as shown in Fig. 1. The factor a = ±1 is used to distinguish between the case of the potential being near an A site

a = 1 or near a B site a = −1. We find that the energy level shifts are

δE = −
U ′

A/B

LcL
(−1)p cos (2qY0 − sΥm) sin (κ+ aη − aχ)

±
U ′

A/B

LcL

√
[1 + as(−1)p sin (2qY0 − sΥm) cos (κ+ aη)] [1 + as(−1)p sin (2qY0 − sΥm) cos (κ+ aη − 2χ)]. (35)

where χ is the angle of the deviation of the potential in the nanotube coordinates. Fig. 8 shows the splitting of the

energy levels as a function of the energy for two different potential positions. The upper curve is for Y0 = 0.025L

(potential is one twentieth of the way from the centre of the nanotube to the end), and shows an oscillating pattern

with period 40, whereas the lower curve is for Y0 = 0.125L (potential is a quarter of the way from the centre of the

nanotube to the end), and shows an oscillating pattern with period 8. The oscillation periods are the same as for the

Hamiltonian δHA, but this time there is a shift of both of the energy levels, one positive, one negative, instead of one

of the levels remaining stationary while the other moves.

B. Impurity at the centre of the unit cell

In this section, we consider the perturbative potential to be placed near the centre of the graphite unit cell, position

C in Fig. 1. For the zeroth order gradient term, we find that the effective Hamiltonian for the potential exactly at

the centre of the unit cell is equal to zero: such a position does not break the rotational symmetry of graphene. The

first non-zero contribution arises from a quadratic deviation from the centre of the unit cell:

δHC = iUCδ (r − R)




1 e2iχ̃ −e−iκ −e2iχ̃−iκ

e−2iχ̃ 1 −e−2iχ̃−iκ −e−iκ

−e+iκ −e2iχ̃+iκ 1 e+2iχ̃

−e−2iχ̃+iκ −e+iκ e−2iχ̃ 1


 , (36)

where UC = (3 |δR| /(2λ))2 v2
aϕ

2(d)U . Applying degenerate perturbation theory in the same way as before we find

that the energy level shifts are δE′ = 0 and δE′′ = V11 + V22. In terms of the model parameters,

δE′′ =
2UC

LcL
[1 − (−1)p cos (2qY0 − sΥm) cosκ+ s(−1)p sin (2qY0 − sΥm) sin (3η − 2χ) sinκ] , (37)

The results are similar to those for the potential exactly on an atomic site: one of the energy levels does not move

and corresponds to a linear combination of clean wavefunctions that has zero matrix element with the effective

Hamiltonian, whereas the other energy level suffers a shift that oscillates with the index p and has a period equal to

1/(Y0/L). Fig. 9 shows the energy level splitting as a function of the energy for two different potential positions. The

upper curve is for Y0 = 0.025L (potential is one twentieth of the way from the centre of the nanotube to the end), and

shows an oscillating pattern with period 40, whereas the lower curve is for Y0 = 0.125L (potential is a quarter of the

way from the centre of the nanotube to the end), and shows an oscillating pattern with period 8. The oscillation of

the level splitting as a function of energy with a period determined by the position Y0 of the impurity along the tube

axis, −L/2 < Y0 < L/2, may be understood as arising from the slow spatial modulation of the envelope wavefunctions

since, for standing waves, the positions of peaks and nodes vary as a function of energy. Therefore the extent to which

they scatter from a given impurity position also depends on their energy.

The dependence of the energy level shift on η and χ arises because the position of the impurity determines the

extent of degeneracy breaking. As a special case, we note that when the angle of deviation of the impurity is

χ = π/2 (see Fig. 1), the Hamiltonian δHC preserves axis reflection symmetry for an armchair tube and the factor

sin (3η − 2χ) = −1. Degeneracy is still broken but there are no off-diagonal matrix elements V12 = V21 = 0 and no

mixing of the pseudospin eigenvectors. Alternatively, using the unitary transformation U , Eq. (8), to change to the



15

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

(δ
E

’’−
δE

’)/
(U

C
/L

C
L)

0 20 40 60 80 100
E/(πv/L)

0.0

0.5

1.0

1.5

2.0

(δ
E

’’−
δE

’)/
(U

C
/L

C
L)

FIG. 9: Splitting δE′′−δE′ of the pairs of degenerate energy levels of a clean nanotube Eq. (37) due to the effective Hamiltonian

δHC of a perturbative potential near the centre of the graphite unit cell. The symbols show the energy shift as a function of

the energy of the unperturbed levels, solid lines are a guide for the eye. The upper curve is for the potential at Y0 = 0.025L

(potential is one twentieth of the way from the centre of the nanotube to the end), lower curve is for Y0 = 0.125L (potential is a

quarter of the way from the centre of the nanotube to the end). Parameter values are s = 1, κ = 2π/3, η = π/6, Υp = Υm = 0,

and the angle of deviation of the potential is χ = π/4.

system where the clean wavefunctions are eigenvalues of σz, it is possible to produce a matrix that has no off-diagonal

spin parts and clearly does not mix the pseudospin eigenfunctions:

U−1δHCU = 2iUCδ (r − R)




0 0 0 0

0 1 0 −e−iκ

0 0 0 0

0 −eiκ 0 1


 . (38)

C. Impurity half-way between atomic sites

In this section, we consider the perturbative potential to be placed near the half-way point between two neighbouring

atoms, position D in Fig. 1. There is a non-zero contribution of the zeroth order gradient term for the potential exactly

at the half-way point:

δHD = iUDδ (r − R)




1 e−i(α−β) e−i(α+β) e−2iα

ei(α−β) 1 e−2iβ e−i(α+β)

ei(α+β) e2iβ 1 e−i(α−β)

e2iα ei(α+β) ei(α−β) 1


 , (39)

where UD = v2
aϕ

2(d/2)U , and the phase factors α = K.RA and β = K.RB are evaluated for the two atomic positions

RA and RB nearest the impurity. We find that the matrix elements are

V11/22 =
UD

2LcL
{2 ± 2s sin (η + α− β)

+2(−1)p cos (α+ β ± (2qY0 − sΥm))

±s(−1)p sin (2α+ η ± (2qY0 − sΥm))

∓s(−1)p sin (2β − η ± (2qY0 − sΥm))} ,

V12V21 =

(
UD

2LcL

)2

{cos (2α+ η) + cos (2β − η)

+2(−1)p cos (η + α− β) cos (2qY0 − sΥm)}2
.
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Generally, there are two non-zero energy shifts, the exact values of which depend on the phase factors α and β that

may take the values 0, 2π/3, or −2π/3, depending on the particular position: there are six D positions shown in

Fig. 1.

However, as a special case, we note that for positions D1 and D4 in Fig. 1 the Hamiltonian δHD preserves axis

reflection symmetry Σ−1
a δHDΣa = δHD for an armchair tube η = π/6. Degeneracy is still broken but there are no

off-diagonal matrix elements V12 = V21 = 0 and no mixing of the pseudospin eigenvectors. For example, α = 0 and

β = 2π/3 for position D1 and, using the unitary transformation U , Eq. (8), to change to the system where the clean

wavefunctions are eigenvalues of σz, it is possible to produce a matrix that has no off-diagonal spin parts and clearly

does not mix the pseudospin eigenfunctions:

U−1δHDU = 2iUDδ (r − R)




0 0 0 0

0 1 0 −eπi/3

0 0 0 0

0 −e−πi/3 0 1


 . (40)

Since pseudospin is related to the underlying molecular orbital state [25], the statement that impurities preserving

mirror reflection in the nanotube axis manage to break degeneracy without mixing the pseudospin eigenvectors

is equivalent to saying that impurities preserving mirror reflection do not result in mixing of the bonding π and

antibonding π∗ energy bands [18, 19, 20, 26, 27].

V. CONCLUSION

In this paper, we considered degeneracy breaking due to short-ranged impurities in finite, single-wall, metallic carbon

nanotubes. The effective mass model was used to describe the slowly varying spatial envelope wavefunctions of spinless

electrons near the Fermi level at two inequivalent valleys (K-points) in terms of the four component Dirac equation for

massless fermions, with the role of spin assumed by pseudospin due to the relative amplitude of the wave function on

the sublattice atoms. Using boundary conditions at the ends of the tube that neither break valley degeneracy nor mix

pseudospin eigenvectors, we used degenerate perturbation theory to study the influence of impurities. The position of

a short-ranged impurity potential within the hexagonal graphite unit cell produces a particular 4×4 matrix structure

of the corresponding effective Hamiltonian, and the symmetry of the Hamiltonian with respect to pseudospin flip and

mirror reflection in the nanotube axis is related to degeneracy breaking and pseudospin mixing, respectively. Table 3

shows a summary of the position dependence for an armchair tube [axis is parallel to the y-axis in Fig. (1)]. It shows

how the character of an impurity determines the extent of valley degeneracy breaking, resulting in the possibility

to observe experimentally either twofold or fourfold periodicity of shell filling [9]. For example, an impurity on an

atomic site will break valley degeneracy and tend to give twofold periodicity, corresponding to spin degeneracy only,

whereas a potential at the centre of the graphite unit cell will not break valley degeneracy and it will preserve fourfold

periodicity corresponding to both spin and valley degeneracy.

Impurity position with respect Label in Breaks valley Breaks axis

to the graphite unit cell Fig.1 degeneracy reflection symmetry

atomic site Ai, Bi yes yes

centre of unit cell C no no

midway along a bond that is D1, D4 yes no

perpendicular to tube axis

midway along a bond D2, D3, D5, D6 yes yes

at 30◦ angle with tube axis

Table 3: The dependence of degeneracy breaking on the impurity position for an armchair nanotube
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In addition to position dependence on the scale of the graphite unit cell, the level splitting displays a sinusoidally

varying energy dependence that has a period determined by the position Y0 of the impurity along the tube axis

−L/2 < Y0 < L/2. This arises from the slow spatial modulation of the envelope wavefunctions since, for standing

waves, the location of peaks and nodes varies as a function of energy. Therefore the extent to which they scatter from

a given impurity position also depends on their energy. It means that, in experimental observations, the shell filling

properties may not be the same in different parts of the spectrum.
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APPENDIX A: GENERAL FORM OF THE MATRIX ELEMENTS OF DEGENERATE PERTURBATION

THEORY

In this appendix, we present expressions for matrix elements Vmn =
∫
drΨ∗

mδHΨn between the clean wavefunctions

Eqs. (23) and (24) and a general effective Hamiltonian with arbitrary coefficients. We set ξR = ξL = 0 corresponding

to pseudospin symmetry preserving boundaries, q1 = q2 ≡ q, p1 = p2 ≡ p, and q = (πp − sΥp)/L. The only

constraints we apply to the general effective Hamiltonian are due to hermicity and time reversal symmetry, because

these constraints are obeyed by every specific effective Hamiltonian that we derive. The results are used in Section IV

where a particular position of the potential corresponds to particular values of the arbitrary coefficients.

We use the constraints of hermicity and time reversal symmetry to write a general effective Hamiltonian as

δH = Uδ (r − R)




a ce+iδ me−iµ le−iα

ce−iδ b we−iβ me−iµ

meiµ weiβ b ce+iδ

leiα meiµ ce−iδ a


 , (A1)

where all the variables represent arbitrary real numbers. We find that the matrix elements are

V11/22 =
U

2LcL
{a+ b± 2sc sin (η − δ)

+2m(−1)p cos (µ± (2qY0 − sΥm))

±sl(−1)p sin (α+ η ± (2qY0 − sΥm))

∓sw(−1)p sin (β − η ± (2qY0 − sΥm))} , (A2)

V12V21 =

(
U

2LcL

)2

{(−1)p (a− b) sin (2qY0 − sΥm)

+2sc(−1)p cos (η − δ) cos (2qY0 − sΥm)

+sl cos (α+ η) + sw cos (β − η)}2 . (A3)

where the upper sign in Eq. (A2) refers to V11 and the lower to V22.

The Hamiltonian δH preserves axis reflection symmetry Σ−1
a δHΣa = δH for an armchair tube η = π/6 if b = a,

w = l, δ = 2π/3 and β = α − 2π/3. Degeneracy is still broken but there are no off-diagonal matrix elements

V12 = V21 = 0 and no mixing of the pseudospin eigenvectors. Using the unitary transformation U , Eq. (8), to

change to the system where the clean wavefunctions are eigenvalues of σz , it is possible to show explicitly that the

Hamiltonian preserving axis reflection symmetry has no off-diagonal spin parts and clearly does not mix the pseudospin
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eigenfunctions:

U−1δHU = U δ (r − R)




a− c 0 m̃∗ + l̃∗ 0

0 a+ c 0 m̃∗ − l̃∗

m̃+ l̃ 0 a− c 0

0 m̃− l̃ 0 a+ c


 , (A4)

where m̃ = meiµ and l̃ = leiα−πi/3.

The Hamiltonian δH preserves pseudospin-flip symmetry ρ−1
z δHρz = δH if b = a, c = 0, µ = 0 (or m = 0), and

l = −w and α = −β (or l = w = 0), in which case V12V21 = V11 − V22 = 0 meaning that degeneracy is not broken.

APPENDIX B: NON-PERTURBATIVE DETERMINATION OF THE SPECTRUM IN THE PRESENCE

OF AN IMPURITY

In this section, we present a non-perturbative calculation of the energy level spectrum in the presence of an impurity.

We consider the additional potential to be placed at an arbitrary position Y0 along the tube −L/2 ≤ Y0 < L/2, and

we use the off-diagonal boundary conditions, Section III B, at the ends of the tube y = ±L/2. Since the potential is a

delta function in space, the wavefunctions away from it are simply the solutions of the clean Hamiltonian. However,

the delta function potential does introduce non-trivial matching conditions at Y0 for the standing waves to the left

and the right. In general, we have an equation of the form

[−ivα.∇ + δ (r − R)V ] Ψ = EΨ (B1)

where V is a 4 × 4 matrix as found in Section IV. To produce the matching conditions, we integrate the equation

with respect to y over a vanishingly small interval Y0 − δ ≤ y ≤ Y0 + δ near the additional potential. The first term in

Eq. (B1) gives a discontinuity in the components ψm of the envelope wavefunction at the potential position, producing

expressions such as ψ1 (Y0 + δ) − ψ1 (Y0 − δ). The second term δ (r − R)VΨ gives the value of the wavefunction

components at the potential position and the term on the right hand side of Eq. (B1), EΨ, gives zero contribution:

although Ψ is not necessarily continuous, it is not infinite. The wavefunctions are then determined, using the resulting

matching conditions, and the energy level spectrum is found. As before, we will consider only metallic nanotubes

with arbitrary chiral angle η. We suppose that the x axis is perpendicular to the tube axis and we consider only the

zero momentum transverse mode so that |E| < 2πv/Lc where Lc = |Ch| is the circumference.

In order to demonstrate what is in principle possible, we consider in detail the case of the additional potential

exactly on an A site with the following effective Hamiltonian:

δHA = UA δ (r − R)




1 0 0 e−iκ

0 0 0 0

0 0 0 0

e+iκ 0 0 1


 , (B2)

where κ is a phase factor associated with intervalley scattering at the impurity κ = R0.(K − K̃). It results in the

following matching conditions at the impurity,

ψ1 (Y0 + δ) − ψ1 (Y0 − δ) = 0, (B3)

ψ2 (Y0 + δ) − ψ2 (Y0 − δ) = ue−iη
[
ψ1 (Y0) + e−iκψ4 (Y0)

]
, (B4)

ψ3 (Y0 + δ) − ψ3 (Y0 − δ) = ueiη
[
eiκψ1 (Y0) + ψ4 (Y0)

]
, (B5)

ψ4 (Y0 + δ) − ψ4 (Y0 − δ) = 0, (B6)

where u = v2
aϕ

2(0)U/vLc. Using these matching conditions, we find that the wavevectors are given by solutions of
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FIG. 10: Position of energy levels as a function of the strength of a potential on an A atomic site in the presence of degeneracy

breaking due to off-diagonal boundary conditions ξm = π/8. The position of the impurity is Y0 = 0.125L (potential is a quarter

of the way from the centre of the nanotube to the end), and other parameter values are κ = 2π/3, η = π/6, ξp = Υp = Υm = 0.

the following equation:

0 = sin (qL+ sΥp + ξm) sin (qL+ sΥp − ξm)

−u
2

sin (qL+ sΥp − ξm) [s cos (qL+ sΥp + ξm) + sin (κ+ η − sΥm − ξp + 2qY0)]

−u
2

sin (qL+ sΥp + ξm) [s cos (qL+ sΥp − ξm) − sin (κ+ η + sΥm − ξp − 2qY0)] . (B7)

In the degenerate case, ξm = 0, expansion of this equation for weak potential strength up to linear in u recovers

the results of the degenerate perturbation theory Eq. (31). Moreover, for arbitrary potential strength and ξm = 0,

sin (qL+ sΥp) is always a common factor of Eq. (B7), meaning that half of the levels suffer no energy shift in the

presence of an impurity for degeneracy preserving boundary conditions. Here we are interested in the non-degenerate

case where the degeneracy has already been lifted by the boundary conditions at y = ±L/2. In the limit u = 0,

the first term in Eq. (B7) reproduces the results for a clean nanotube, Eqs. (25) and (26), and we now label these

wavevectors as q
(0)
1 and q

(0)
2 , respectively. The angle ξm breaks degeneracy, q

(0)
2 − q

(0)
1 = 2ξm/L for p2 = p1. Now we

will present a perturbative result for weak potential strength obtained by expanding Eq. (B7) up to linear in u with

ξm 6= 0:

q1 ≈ q
(0)
1 +

su

2L

[
1 + s(−1)p1 sin

(
κ+ η − sΥm − ξp + 2q

(0)
1 Y0

)]
, (B8)

q2 ≈ q
(0)
2 +

su

2L

[
1 − s(−1)p2 sin

(
κ+ η + sΥm − ξp − 2q

(0)
2 Y0

)]
. (B9)

For simplicity we set p2 = p1 ≡ p in order to show that the impurity potential may enhance or reduce the spacing

between adjacent levels:

q2 − q1 =
2ξm
L

− u

L
(−1)p cos

(
sΥm − 2 [πp− sΥp]

Y0

L

)
sin

(
κ+ η − ξp − 2ξm

Y0

L

)
. (B10)

Fig. 10 shows the evolution of energy levels near E = 0 as a function of the strength of the potential found by solving

Eq. (B7) numerically. In this example, there is degeneracy breaking in the clean tube due to the boundary conditions,

ξm = π/8. In a similar way to the degenerate case, one of the levels in each nearly degenerate pair does not move

very much as a function of impurity strength, while its partner suffers a shift that oscillates from pair to pair as a

function of energy (because of the non-zero position of the impurity Y0 with respect to the centre of the tube). Some
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levels are brought closer together by the presence of the impurity potential, some appear not to move, whilst others

are split further apart.
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