589 research outputs found

    Best practice report on compliance monitoring of ships with respect to current and future IMO regulation

    Get PDF
    Since 2015, new rules from the International Maritime Organization (IMO) and legislation from EU and the US allows ships to run with maximum fuel sulfur content (FSC) of 0.1 % m/m on northern European and US waters, respectively, or use appropriate abatement technique. In addition, since2020, there is a global cap of 0.5 % for the FSC. From 2021, northern Europe is a NOx emission control area, requiring at least 80 % emission reduction (Tier III) for all ships built from this year and onward, compared to ships built between 2000 and 2010 (Tier I). There is also a discussion withinIMO how to control particle emission of black carbon (BC). This report focuses on best practice in remote compliance monitoring of FSC without stepping on board of the ship. Similar measurements for NOx are also shown, with a discussion whether these can be used for compliance monitoring.Some examples of remote measurements of BC are provided. Remote measurement methods for compliance monitoring of FSC in ships have been developed during the last 10 years within national and European projects (EnviSum and Compmon) and furthermore implemented in nationalmonitoring in Belgium, Denmark, Germany the Netherlands and Sweden. The measurement methods are generally based on sniffer systems measuring the exhaust gas concentrations of SO2, NOx and particulate matter (BC), respectively, against CO2. There are systems with varying sensitivity that areoperated at different distances from the ships (50 m to 2 km) and from different platforms, i.e. fixed, shipborne and airborne (manned and unmanned). There are also optical systems measuring the ratio of SO2 against NO2, as an indicator of the FSC, primarily used from manned aircraft. The focus inthis report is on standard sniffer systems, based on generally available equipment for air quality monitoring. Such systems have been used extensively during the last 5 years for operational compliance monitoring from both fixed and airborne platforms. A summary of FSC measurementresults for multiple operators and platforms shows that the noncompliance level has decreased significantly over the last 5 years at different parts of Europe, i.e. from 5-13 % in 2015 to below 1 % in 2020. The highest noncompliance levels were found at the SECA border in the English channeland in the middle of the Baltic sea. The measurement data, interpreted with ship modelling data from the Finnish Meteorological Institute, indicates that remote compliance monitoring of NOx should work reasonably well for ships operating at high loads (above 40 % load). For slow steaming shipsthe measurements are associated with larger uncertainties and care should be taken in the interpretation of then results here and further ship emission modelling is needed to assess this. The remote measurements of BC work well to identify high emitters and groups of polluting ships. However, the BC emissions have a strong load dependence are intermittent by nature and it is therefore difficult to make short term measurements. See\ua0https://cshipp.e

    Surveillance of Sulfur Fuel Content in Ships at the Great Belt Bridge 2020

    Get PDF
    Results are reported from stack gas emission measurements of individual ships at the Great Belt Bridge in Denmark. From the data the fuel sulfur content (FSC) used by the ships has been estimated. The project has been carried out on behalf of the Danish Environmental Pro-tection Agency and this report covers the period December 2019 to November 9, 2020. The overall aim of the project was to carry out operational surveillance of ships with respect to the EU sulfur directive that was entered into force in 2015 and which is implemented in the Danish legislation. It requires the usage of low sulfur marine fuel in SECAs (0.10 %) or using abate-ment technique (e.g. scrubber), The main purpose of the surveillance was to guide further port state control of ships at the destination harbors of the ships, both in Denmark and other ports, and to gather general statistics about compliance rates.This report describes the technical systems and their performance and discusses the general compliance levels with respect to the EU sulfur directive and Danish legislation. The surveil-lance measurements were conducted by automatic gas sniffer measurements at the Great Belt Bridge, reporting in real time to a web database. The measurement systems have been developed by Chalmers University of Technology through Swedish national funding and EU projects. The measurement system at the Great Belt Bridge has been in operation since 2015.In the period December 2019 to November 9, 2020, 3910 valid sniffer measurements of indi-vidual ships were carried out at the Great Belt Bridge with medium and good quality. The pre-cision of the fixed sniffer is estimated as 0.04 FSC % (1σ) and therefore only ships running with an FSC of 0.18 % (2σ) or higher can be detected as non-compliant ships with reasonable statistical confidence. The sniffer also has an estimated systematic bias of - 0.077 % FSC for the measurements in 2020, based on comparisons with port state control authorities. This bias, together with the measurement precision, is accounted for when determining the non-compliance threshold value. The data for the period December 2019 to November 9, 2020 shows a compliance rate of 98.6 %. This corresponds to 55 non-compliant ships (1.4 %) and out of these only 1 ship (i.e. 0.03 %) was in gross non-compliance, i.e. running with FSC above 0.3 % while the rest had an FSC below 0.14 %. This is slightly lower than in 2019 (4 ships corresponding to 0.075% above FSC 0.3 %) and it can be compared to the correspond-ing numbers for 2018 when the compliance rate was 95.3 % and 1.8 % of the ships were in gross noncompliance. One reason for the improvements could be that scrubber installations appears to work better in 2019 and 2020 compared to the previous years.The observed high and improved compliance rate in 2020 is similar to the measurements in 2019 and consistent with other measurement studies in northern Europe during 2019. Airborne mini-sniffer measurements of 600 ships around the coast of Denmark, on behalf of the Danish EPA, shows 50 % less noncompliance between 2018 and 2019, with only 3 ships above FSC of 0.3 %. Sniffer measurements carried out in Belgian waters, in the English Channel, by fixed wing aircraft show that the non-compliance rates of ships with FSC above 0.4% changed from 4.9 % to 0.4 % between 2018 and 2019, with similar values in 2020. Fixed site measurements in the ship channel to Hamburg shows improved compliance rates since 2015 with noncompli-ance rates less than 1 % in Wedel and Bremerhaven in 2019. Sniffer measurements at the 6resund Bridge by Chalmers University of Technology, on behalf of Swedish transport agency, shows 99.7% compliance rates in 2020 with no ships in gross noncompliance.https://www2.mst.dk/Udgiv/publications/2020/12/978-87-7038-250-2.pd

    Surveillance of Sulfur Fuel Content in Ships at the Great Belt Bridge 2019

    Get PDF
    Sulfur,\ua0 compliance monitoring, remote surveillanc

    A rapid deployment instrument network for temporarily monitoring volcanic SO2 emissions - a study case from Telica volcano

    Get PDF
    Volcanic gas emissions play a crucial role in describing geophysical processes; hence measurements of magmatic gases such as SO2 can be used as tracers prior and during volcanic crises. Different measurement techniques based on optical spectroscopy have provided valuable information when assessing volcanic crises. This paper describes the design and implementation of a network of spectroscopic instruments based on Differential Optical Absorption Spectroscopy (DOAS) for remote sensing of volcanic SO2 emissions, which is robust, portable and can be deployed in relative short time. The setup allows the processing of raw data in situ even in remote areas with limited accessibility, and delivers pre-processed data to end-users in near real time even during periods of volcanic crisis, via a satellite link. In addition, the hardware can be used to conduct short term studies of volcanic plumes in remotes areas. The network was tested at Telica, an active volcano located in western Nicaragua, producing what is so far the largest data set of continuous SO2 flux measurements at this volcano

    Methane emissions from industrial activities using drones

    Get PDF
    Innovative drone-based methods have been developed to map and quantify methane leakages from various industrial activities, such as refineries, Liquified Natural Gas (LNG) terminals, landfills, and water treatment facilities. These methods use a high-speed, high-sensitivity laser sensor and were validated through controlled gas releases. They were also compared to a ground-based infrared absorption-based technique. This initiative is supported by the Swedish Governmental Agency for Innovation Systems (Vinnova) and aligns with UN Sustainable Development Goals 9, 11, and 13. The goal is to reduce methane emissions significantly, aiding Sweden in achieving net-zero greenhouse gas emissions by 2045. Accurate measurements enable effective, targeted, and trackable measures to minimize emissions, resulting in a rapid positive climate impact. The project has led to the development of two distinct drone-based methods: the wall approach and the tracer approach. The wall approach measures gas concentrations across the entire cross-section of the plume, whereas the tracer approach measures the ratio of leaking gas to source gas. Depending on the source\u27s size, one approach may be preferred over the other, with the tracer method being more suitable for point sources and the wall approach for larger sources. The custom-designed drone in this project, provided and operated by Gerdes Solution. is equipped with a high-sensitivity laser sensor and has a flight duration of about 12 minutes while carrying a 3 kg payload. This limitation presents a challenge when conducting wall measurements, which require approximately 25 minutes of flight time for the studied sources. Due to the drone\u27s limited flight time, it necessitates landing and battery replacement, which complicates the process and limits the number of repeat measurements. In future endeavors, employing a drone with a longer flight duration would be advantageous. In total, the study detected about 220 kg/h of methane emissions and 3 kg/h of nitrous oxide emissions, equivalent to an emission rate of about 7 tons/h of carbon dioxide. The emissions were dominated by the water treatment plant and landfills, with relatively little coming from the refinery and LNG plant. However, the wall measurements in thus study serve as demonstrations of how the technique can be used and do not provide a comprehensive picture of the actual emissions from the individual sites; this would require more statistical data in terms of repeat measurements and measurement days. It is shown that drone measurements using the new high sensitivity laser is a valuable tool for mapping methane concentrations from various types of industrial sources, which are challenging to investigate today due to diffuse emissions, large dimensions, and complex geometries. The validation studies show that both the wall approach and controlled tracer releases can be used to quantify emissions, achieving an accuracy of up to 10 % for a simple, single, source. However, in the real measurement situation, the wall approach may be difficult to execute due to practical challenges like flying restrictions and the need for spatially dense data that can be interpolated to a homogenous grid and repeated measurements. In several cases, when the drone had to fly relatively close to the plumes, downwind of large buildings in complex and turbulent wind fields, the wall approach yielded large variability in the resulting flux. It is hence evident that the wall approach requires a thorough understanding of the measurement situation, and that repeated measurements are needed, at different distances from the source and in varying wind directions. The tracer approach was therefore preferred choice for obtaining emission rates in this study, although it is challenging to carry out representative tracer releases for larger sources and for cases when the measurements are performed near to the source, and in this case the wall approach is preferred. It was also shown that the drone-based tracer approach is advantageous to the ground based since it is then easier to capture the full plume

    Certification of an aircraft and airborne surveillance of fuel sulfur content in ships at the SECA border

    Get PDF
    In 2015 new rules from the IMO and legislation from EU (Sulfur directive) and the US requires ships to run with maximum fuel sulfur content (FSC) of 0.1 % m/m in northern European and North American waters. In order to promote a level playing field within the shipping sector, there is a need for measurement systems that can make effective compliance control and this is the main objective of the CompMon project, funded through the European CEF program (Connecting Europe Facility). As part of this project, a sensor system has been certified for ship surveillance measurements in a Piper Navajo aircraft and it has been demonstrated for airborne measurements of FSC in individual ships on the English Channel. The measurement system consists of an optical module which measures total emissions of SO2 and NO2 in g/s and a sniffer system by which FSC is retrieved from extractive measurements of SO2 and CO2. It can be used from fixed sites, patrol vessels and from aircraft. The advantage with airborne surveillance is the capability to check ships that are operating in the main shipping lanes, up to 200 nautical miles from shore. The precision of the estimated FSC from the sniffer system is 0.05 % m/m and hence at the 95 % confidence limit, ships above a FSC of 0.2 % m/m can be checked. The sniffer system also has a negative bias in the FSC of approx- imately 0.04 % m/m which is accounted for in the FSC calculations. The optical system has larger measurement uncertainties than the sniffer but it is intended mostly for guid- ance of other controls. As part of the CompMon project, a measurements campaign with the Navajo Piper aircraft was carried out at the SECA (Sulfur Emission Control Area) border in the English Channel at longitude 5 W. Six flight missions with duration of 4 to 5 hours were carried out from September 2 to 10, 2016, flying from Brest airport. In this manner it was possible to cover the longitude range 2o - 6o W. During the campaign, 114 ships were measured with the sniffer system, corresponding to 71 ships inside the SECA and 42 ships outside. The level of compli- ance inside the SECA was here 87 % and this is considerably lower than measurements carried out elsewhere within CompMon in other parts of the SECA (95-99 %). Two thirds of the non-complying vessels were leav- ing the SECA. With the optical system 110 individual ships were measured, 42 outside and 68 inside the SE- CA. The measurements show a similar pattern as the sniffer data but with a few false values. Nevertheless it is shown that both low and high FSC ships will be classified correctly with about 80-90 % probability with the optical system and this system is hence very promising as a tool to guide further compliance controls

    Fixed remote surveillance of fuel sulfur content in ships from fixed sites in the Göteborg ship channel and Öresund bridge

    Get PDF
    In 2015 new rules from the IMO and legislation from EU (Sulfur directive) and the US requires ships to run with maximum fuel sulfur content (FSC) of 0.1 % m/m in northern European and North American waters. In order to promote a level playing field within the shipping sector, there is a need for measurement systems that can make effective compliance control and this is the main objective of the CompMon project, funded through the European CEF program (Connecting Europe Facility). As part of this project, an automatic sniffer sensor system has been applied in the Göteborg ship channel at the Älvsborg island during 3 years (2014- 2016) and at the Öresund Bridge during two months at the end of 2016. The typical distances from the ships here varied between 500 -1000 m. The sniffer system is based on several extractive instruments measuring concentrations of SO2 and CO2 and others species, such as NOx, in the ship emission plumes that drift over the measurement station. In addition to fixed stations, the system can also be used from mobile platforms such as harbor patrol vessels and aircraft. From the data above, together with information about the ships from AIS (Automatic Identification System) and wind data, the FSC is automatically calculated and the ship is identi- fied. This is done using software developed as part of this project (Single Emitter identification Tool).The measurement precision (1σ) of the sniffer system is approx. 0.04 % m/m for ships using a FSC of 0.1 % m/m. The sniffer system also has a negative bias in the measured FSC, varying between 0.04 % to 0.08 % m/m and this is accounted for when calculating the threshold for non-compliance. Based on the above, it is possible to identify ships with FSC above 0.18 % m/m with 95% confidence limit, if the bias is corrected for statistically. For the measurements at the Älvsborg island site in 2014 and 2015, the corresponding limit is higher, 0.29 % m/m, due to a measurement artifact that was eliminated in 2016. On board measurements in 2015 and 2016 by the Swedish port state control authority shows that most non-compliant ships had FSCs be- tween 0.1 % to 0.2 % m/m when controlled at berth and this is generally below the 95% confidence limit threshold of the sniffer. Therefore many non-compliant ships will not be detected when using the sniffer close to harbors and a more precise sensor is therefore preferred.The measurements at the Älvsborg island were carried out during a time period when the allowed FSC limit changed significantly. The data for 2014, corresponding to more than 4000 measurements of 500 individual ships, shows that 99 % of the ships were using compliant fuel below the FSC limit of 1 % m/m. In 2015 the FSC limit changed to 0.1 % m/m. The measurements in 2015 and 2016, corresponding to the same amount of ships as in 2014, showed that 91.5 % and 98 %, respectively, were using compliant fuel with respect to FSC. The lower compliance rate in 2015 compared to 2016 is potentially influenced by measurement artifacts that were later eliminated in 2016. At the Öresund Bridge. 58 ships were measured as part of the CompMon pro- ject. The measurements continued another month with support from the interreg project Envisum, with anoth- er 62 ships measured. The compliance level at the Öresund Bridge corresponds to 98 %. This is actually com- parable to the corresponding measurements elsewhere and at the Älvsborg island site during the same time period

    Surveillance of Sulfur Emissions from Ships in Danish Waters

    Get PDF
    In 2015 new rules from the IMO and legislation from EU (Sulfur directive) requires ships to run with maximum fuel sulfur content (FSC) of 0.1 % m/m in northern European waters. In order to promote a level playing field within the shipping sector, there is a need for measurement systems that can make effective compliance control. This report describes the results from ship emission measurements on the waters surrounding Denmark from June 2015 to July 2017 on behalf of the Danish Environmental Protection Agency. The overall aim was to carry out operational surveillance of ships with respect to the EU sulfur directive and particularly the sulfur limits for marine fuel in the European Sulfur Emission Control Area (0.10 %), which entered into force on January 1st 2015, as well as to guide further port state control of ships at the destination harbors of the ships, both in Denmark and other ports. During the project the FSC of individual ships was estimated by perform- ing spot checks of exhaust plumes of individual ships. This was conducted by automatic gas sniffer measurements at the Great Belt Bridge and airborne surveillance measurements using sniffer and optical sensors. The data from the fixed system were transmitted in real time to a web database and alarms were triggered for high FSC ships in the form of emails. The report describes the technical systems and their performance and the general compliance levels of the measured ships. The measurement systems have been developed by Chalmers University of Technology through Swedish national funding and the EU project CompMon. The airborne dataset corresponds to approx. 900 individual ships, measured by sniffer or/and optical sensor over 245 flight hours. The optical sensor has low precision and is therefore used as a first alert system to identify ships running on high sulfur fuel. The precision of the airborne FSC meas- urements by the sniffer system is better and it is estimated as \ub1 0.05 % m/m (1σ) with a systematic bias of - 0.045 % m/m. Therefore only ships running with FSC of 0.2 % m/m or higher can be de- tected as non-compliant ships with good confidence limit (95 %) by the airborne sniffer system. The airborne measurements during 2015 and 2016 on Danish waters show that 94 % of the ships complied with the EU Sulphur directive, at the 95 % confidence limit. The compliance rate was lower, 92 %, during the 2nd half of 2016. In the period June 2015 to May 2017, 8426 sniffer measurements of individual ships were carried out at the Great Belt Bridge. However, there were technical problems in the first part of the project and the sniffer therefore had reduced sensitivity the first year and only high sulfur ships (> 1 % FSC) could be detected as non-complying vessels with appropriate statistical confidence. The precision in the estimated FSC by the fixed sniffer system is estimated as \ub1 0.04 % m/m (1σ) with a systematic bias of - 0.055 % m/m. Therefore only ships running with FSC of 0.18 % or higher can be detected as non-compliant ships with good confidence limit (95 %) by the fixed sniffer system. The data for the period June 2016 to October 2016 show a compliance rate of 94.6 % which increased to 97.4 % in the period January 2017 to May 2017. The compliance level during different time periods and platforms varied between 92-97 %. Here 1 - 2 % of the ships were in gross non-compliance with the EU sulfur directive with FSC values above 0.5 % m/m. There were differences over time, with the highest values in the summer of 2016. The compliance level was close to the values (95 %) measured by port state control authorities in Sweden and Denmark 2015 and 2016. When comparing ships measured by port state and the ones in this project it can be deduced that the efficiency of finding non-compliant vessels could be increased by at least a factor of 4, if the port state controls were guided by measurements. Most of the non-compliant ships (90 %) were measured high only once. But there were cases with individual ships and ship operators that were more abundant in the non-compliance statistics. The non- compliant ships that were seldom in the area around Denmark had higher emissions of SO2 than the non-compliant ones that operated their more frequently. On several occasions during this study we encountered ships equipped with scrubbers that were non-compliant with respect to the EU sulfur directive

    Phosphorylation of gH2AX as a novel prognostic biomarker for laryngoesophageal dysfunction-free survival

    Get PDF
    Current larynx preservation treatments have achieved an improvement of laryngoesophageal dysfunction-free survival (LDS) but lead to significant toxicities and recurrences. At present, there is no evidence to select the group of patients that may benefit from preservation approaches instead of surgery. Therefore, laryngeal biomarkers could facilitate pretreatment identification of patients who could respond to chemoradiation-based therapy. In this study, we evaluated retrospectively 53 patients with larynx cancer to determine whether gH2AX phosphorylation (pH2AX) alone or in combination with the membrane protein MAP17 (PDZK1IP1) could be used as prognostic biomarkers. We also evaluated whether the completion of cisplatin treatment and radiotherapy could predict survival in combination with pH2AX. We found that the dose of cisplatin received but not the length of the radiotherapy influenced LDS. High-pH2AX expression was associated with prolonged LDS (HR 0.26, p = 0.02) while MAP17 correlated with overall survival (OS) (HR 0.98, p = 0.05). High-MAP17 and high-pH2AX combined analysis showed improved LDS (with 61.35 months vs 32.2 months, p = 0.05) and OS (with 66.6 months vs 39.8 months, p = 0.01). Furthermore, the subgroup of high-pH2AX and optimal dose of cisplatin was also associated with OS (72 months vs 38.6 months, p = 0.03) and LDS (66.9 months vs 27 months, p = 0.017). These findings suggest that pH2AX alone or better in combination with MAP17 may become a novel and valuable prognostic biomarker for patients with laryngeal carcinoma treated with preservation approaches.Junta de Andalucia ISCIII-Red de Biobancos RD12/0036/0017.Unión Europea, Ministerio de Economía y Competitividad PI12/00137, PI15/00045, RTICC: RD12/0036/0028Junta de Andalucía CTS-6844; CTS-1848Junta de Andalucía PI-0135-2010; PI-0306-2012Instituto Carlos III (ISCIII) PIE13/0004

    Evaluación de tres niveles de afrecho de cervecería sobre el consumo y retención aparente en ponedoras Leghorn

    Get PDF
    The substitution of different levels of commercial feed by brewer's bran in the White Leghorn layer feed was evaluated. Under production conditions, 32 hens divided into two groups were used: intact and cecotomized, each divided into four subgroups, to which the following treatments were applied: commercial feed (control) and by hundreds of substitution thereof for bran (10 ; 20 and 30) with a particle size of 1 mm. A 2 x 4 factorial design was applied. The consumption of nitrogen and neutral detergent fiber and the apparent retention of organic matter showed interaction between the factors under study. The diet factor significantly influenced the retention of dry matter and detergent neutral fiber. Dry matter retention was: 71.30; 62.98; 61.65 and 60.95, while for neutral detergent fiber it was: 74.90; 67.01; 65.71 and 65.94% for the control and experimental groups, respectively. The results allow to suggest up to 10% replacement of commercial feed with this by-product.Se  evaluó la sustitución de  diferentes niveles de  pienso comercial por afrecho de cervecería en la alimentación de ponedoras White  Leghorn. En condiciones de  producción se  utilizaron  32  gallinas  divididas  en  dos  grupos: intactas  y cecotomizadas, divididos cada uno en cuatro  subgrupos, a los que  se les aplicó los   siguientes   tratamientos:  pienso   comercial   (control)  y  por   cientos  de sustitución del mismo por afrecho (10; 20 y 30) con un tamaño de partícula de 1 mm . Se  aplicó un diseño factorial 2 x 4. El consumo de nitrógeno y fibra neutro detergente y la retención aparente de  materia orgánica mostraron interacción entre  los factores en  estudio. El factor dieta influyó significativamente sobre la retención de  la materia seca y la fibra neutro  detergente. La  retención de  la materia seca fue de:  71,30;  62,98;  61,65  y 60,95,  mientras que  para  la fibra neutro  detergente fue de: 74,90;  67,01;  65,71  y 65,94  % para  el grupo  control y los experimentales, respectivamente. Los resultados permiten sugerir hasta un 10 % de sustitución del pienso comercial con este subproducto
    corecore