146 research outputs found

    Occupational Benzene Exposure and Lymphoma Risks: Vlaanderen et al. Respond

    Get PDF

    Exposure-Response Estimates for Diesel Engine Exhaust and Lung Cancer Mortality Based on Data from Three Occupational Cohorts

    Get PDF
    Background: Diesel engine exhaust (DEE) has recently been classified as a known human carcinogen. Objective: We derived a meta-exposure–response curve (ERC) for DEE and lung cancer mortality and estimated lifetime excess risks (ELRs) of lung cancer mortality based on assumed occupational and environmental exposure scenarios. Methods: We conducted a meta-regression of lung cancer mortality and cumulative exposure to elemental carbon (EC), a proxy measure of DEE, based on relative risk (RR) estimates reported by three large occupational cohort studies (including two studies of workers in the trucking industry and one study of miners). Based on the derived risk function, we calculated ELRs for several lifetime occupational and environmental exposure scenarios and also calculated the fractions of annual lung cancer deaths attributable to DEE. Results: We estimated a lnRR of 0.00098 (95% CI: 0.00055, 0.0014) for lung cancer mortality with each 1-μg/m3-year increase in cumulative EC based on a linear meta-regression model. Corresponding lnRRs for the individual studies ranged from 0.00061 to 0.0012. Estimated numbers of excess lung cancer deaths through 80 years of age for lifetime occupational exposures of 1, 10, and 25 μg/m3 EC were 17, 200, and 689 per 10,000, respectively. For lifetime environmental exposure to 0.8 μg/m3 EC, we estimated 21 excess lung cancer deaths per 10,000. Based on broad assumptions regarding past occupational and environmental exposures, we estimated that approximately 6% of annual lung cancer deaths may be due to DEE exposure. Conclusions: Combined data from three U.S. occupational cohort studies suggest that DEE at levels common in the workplace and in outdoor air appear to pose substantial excess lifetime risks of lung cancer, above the usually acceptable limits in the United States and Europe, which are generally set at 1/1,000 and 1/100,000 based on lifetime exposure for the occupational and general population, respectively. Citation: Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K. 2014. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122:172–177; http://dx.doi.org/10.1289/ehp.130688

    Датчики интегральной поглощенной дозы ионизирующего излучения на основе МОП-транзисторов

    Get PDF
    Определены требования к конструкции технологии изготовления р- и n-канальных МОП-транзисторов с толстым слоем оксида, предназначенных для применения в качестве интегральных дозиметров поглощенной дозы ионизирующего излучения.Визначено вимоги до конструкції та технології виготов лення р-канальних та n-канальних МОП-транзисторів із тоѕстим шаром оксиду, призначених для вжитку як інтегральні дозиметри поглинутої дози іонізуючого випромінення. Розроблено технологію створення радіаційно-чутливих МОП-транзисторів з товстим шаром оксиду в р-канальному и в n-канальному вариантах.The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created

    A State-of-the-Science Review on High-Resolution Metabolomics Application in Air Pollution Health Research: Current Progress, Analytical Challenges, and Recommendations for Future Direction

    Get PDF
    BACKGROUND: Understanding the mechanistic basis of air pollution toxicity is dependent on accurately characterizing both exposure and biological responses. Untargeted metabolomics, an analysis of small-molecule metabolic phenotypes, may offer improved estimation of exposures and corresponding health responses to complex environmental mixtures such as air pollution. The field remains nascent, however, with questions concerning the coherence and generalizability of findings across studies, study designs and analytical platforms. OBJECTIVES: We aimed to review the state of air pollution research from studies using untargeted high-resolution metabolomics (HRM), highlight the areas of concordance and dissimilarity in methodological approaches and reported findings, and discuss a path forward for future use of this analytical platform in air pollution research. METHODS: We conducted a state-of-the-science review to a) summarize recent research of air pollution studies using untargeted metabolomics and b) identify gaps in the peer-reviewed literature and opportunities for addressing these gaps in future designs. We screened articles published within Pubmed and Web of Science between 1 January 2005 and 31 March 2022. Two reviewers independently screened 2,065 abstracts, with discrepancies resolved by a third reviewer. RESULTS: We identified 47 articles that applied untargeted metabolomics on serum, plasma, whole blood, urine, saliva, or other biospecimens to investigate the impact of air pollution exposures on the human metabolome. Eight hundred sixteen unique features confirmed with level-1 or-2 evidence were reported to be associated with at least one or more air pollutants. Hypoxanthine, histidine, serine, aspartate, and glutamate were among the 35 metabolites consistently exhibiting associations with multiple air pollutants in at least 5 independent studies. Oxidative stress and inflammation-related pathways—including glycerophospholipid metabolism, pyrimidine metabolism, methionine and cysteine metabolism, tyrosine metabolism, and tryptophan metabolism—were the most commonly perturbed pathways reported in >70% of studies. More than 80% of the reported features were not chemically annotated, limiting the interpretability and generalizability of the findings. CONCLUSIONS: Numerous investigations have demonstrated the feasibility of using untargeted metabolomics as a platform linking exposure to internal dose and biological response. Our review of the 47 existing untargeted HRM–air pollution studies points to an underlying coherence and consistency across a range of sample analytical quantitation methods, extraction algorithms, and statistical modeling approaches. Future directions should focus on validation of these findings via hypothesis-driven protocols and technical advances in metabolic annotation and quantification. https://doi.org/10.1289/EHP11851

    Франкова творчість у новітній історико-літературній парадигмі

    Get PDF
    The aim of this study was to investigate the possible reduced risk of Parkinson Disease (PD) due to coffee, alcohol, and/or cigarette consumption. In addition, we explored the potential effect modification by intensity, duration and time-since-cessation of smoking on the association between cumulative pack-years of cigarette smoking (total smoking) and PD risk. Data of a hospital based case-control study was used including 444 PD patients, diagnosed between 2006 and 2011, and 876 matched controls from 5 hospitals in the Netherlands. A novel modeling method was applied to derive unbiased estimates of the potential modifying effects of smoking intensity, duration, and time-since-cessation by conditioning on total exposure. We observed no reduced risk of PD by alcohol consumption and only a weak inverse association between coffee consumption and PD risk. However, a strong inverse association of total smoking with PD risk was observed (OR = 0.27 (95%CI: 0.18-0.42) for never smokers versus highest quartile of tobacco use). The observed protective effect of total smoking was significantly modified by time-since-cessation with a diminishing protective effect after cessation of smoking. No effect modification by intensity or duration of smoking was observed indicating that both intensity and duration have an equal contribution to the reduced PD risk. Understanding the dynamics of the protective effect of smoking on PD risk aids in understanding PD etiology and may contribute to strategies for prevention and treatment

    Plan for development of case studies - Deliverable Report AD 15.1 WP 15 - Mixtures, HBM and human health risk

    Get PDF
    This deliverable describes the activities in task 15.3 leading up to the development of cases studies for mixture health effects and outlines the proposed case studies. The proposed case studies are: · Developmental neurotoxicity beyond polybrominated diphenylethers · Heavy metals and nephrotoxicity · Anti-androgenic chemicals and male reproductive health · Chromium (VI), nickel and polycyclic aromatic hydrocarbons and lung cancer · Addressing exposure misclassification in mixture studies The Addendum provides further details about multi-year perspective and timing, as well as detailed budgetary aspects per case study.HBM4EU- Grant agreement 733032 HORIZON2020 Programmeinfo:eu-repo/semantics/publishedVersio

    The mediating effect of immune markers on the association between ambient air pollution and adult-onset asthma

    Get PDF
    We aim to investigate to what extent a set of immune markers mediate the association between air pollution and adult-onset asthma. We considered long-term exposure to multiple air pollution markers and a panel of 13 immune markers in peripheral blood samples collected from 140 adult cases and 199 controls using a nested-case control design. We tested associations between air pollutants and immune markers and adult-onset asthma using mixed-effects (logistic) regression models, adjusted for confounding variables. In order to evaluate a possible mediating effect of the full set of immune markers, we modelled the relationship between asthma and air pollution with a partial least square path model. We observed a strong positive association of IL-1RA [OR 1.37; 95% CI (1.09, 1.73)] with adult-onset asthma. Univariate models did not yield any association between air pollution and immune markers. However, mediation analyses indicated that 15% of the effect of air pollution on risk of adult-onset asthma was mediated through the immune system when considering all immune markers as a latent variable (path coefficient (β) = 0.09; 95% CI: (-0.02, 0.20)). This effect appeared to be stronger for allergic asthma (22%; β = 0.12; 95% CI: (-0.03, 0.27)) and overweight subjects (27%; β = 0.19; 95% CI: (-0.004, 0.38)). Our results provides supportive evidence for a mediating effect of the immune system in the association between air pollution and adult-onset asthma

    Effects of Nightshift Work on Blood Metabolites in Female Nurses and Paramedic Staff: A Cross-sectional Study

    Get PDF
    Nightshift work disturbs the circadian rhythm, which might contribute to the development of cardio-metabolic disorders. In this cross-sectional study, we aimed to gain insight into perturbations of disease relevant metabolic pathways due to nightshift work. We characterized the metabolic profiles of 237 female nurses and paramedic staff participating in the Klokwerk study using the Nightingale Health platform. We performed analyses on plasma levels of 225 metabolites, including cholesterol, triglycerides, fatty acids, and amino acids. Using both principal component- and univariate-regression, we compared metabolic profiles of nightshift workers to metabolic profiles from workers that did not work night shifts (defined as day workers). We also assessed whether differential effects were observed between recently started versus more experienced workers. Within the group of nightshift workers, we compared metabolic profiles measured right after a nightshift with metabolic profiles measured on a day when no nightshift work was conducted. We observed evidence for an impact of nightshift work on the presence of unfavorable fatty acid profiles in blood. Amongst the fatty acids, effects were most prominent for PUFA/FA ratios (consistently decreased) and SFA/FA ratios (consistently elevated). This pattern of less favorable fatty acid profiles was also observed in samples collected directly after a night shift. Amino acid levels (histidine, glutamine, isoleucine, and leucine) and lipoproteins (especially HDL-cholesterol, VLDL-cholesterol, and triglycerides) were elevated when comparing nightshift workers with day workers. Amino acid levels were decreased in the samples that were collected directly after working a nightshift (compared to levels in samples that were collected during a non-nightshift period). The observed effects were generally more pronounced in samples collected directly after the nightshift and among recently started compared to more experienced nightshift workers. Our finding of a suggested impact of shift work on impaired lipid metabolism is in line with evidence that links disruption of circadian rhythmicity to obesity and metabolic disorders

    Flexible Meta-Regression to Assess the Shape of the Benzene–Leukemia Exposure–Response Curve

    Get PDF
    Ba c k g r o u n d: Previous evaluations of the shape of the benzene–leukemia exposure–response curve (ERC) were based on a single set or on small sets of human occupational studies. Integrating evidence from all available studies that are of sufficient quality combined with flexible meta-regression models is likely to provide better insight into the functional relation between benzene exposure and risk of leukemia. Objectives: We used natural splines in a flexible meta-regression method to assess the shape of the benzene–leukemia ERC. Met h o d s: We fitted meta-regression models to 30 aggregated risk estimates extracted from nine human observational studies and performed sensitivity analyses to assess the impact of a priori assessed study characteristics on the predicted ERC. Re s u l t s: The natural spline showed a supralinear shape at cumulative exposures less than 100 ppmyears, although this model fitted the data only marginally better than a linear model (p = 0.06). Stratification based on study design and jackknifing indicated that the cohort studies had a considerable impact on the shape of the ERC at high exposure levels (> 100 ppm-years) but that predicted risks for the low exposure range (< 50 ppm-years) were robust. Co n c l u s i o n s: Although limited by the small number of studies and the large heterogeneity between studies, the inclusion of all studies of sufficient quality combined with a flexible meta-regression method provides the most comprehensive evaluation of the benzene–leukemia ERC to date. The natural spline based on all data indicates a significantly increased risk of leukemia [relative risk (RR) = 1.14; 95 % confidence interval (CI), 1.04–1.26] at an exposure level as low as 10 ppm-years. Key w o r d s: benzene, epidemiology, leukemia, meta-regression, quantitative risk assessment. Environ Health Perspect 118:526–532 (2010). doi:10.1289/ehp.0901127 available vi

    Toxicity Weighting for Human Biomonitoring Mixture Risk Assessment: A Proof of Concept

    Get PDF
    Chemical mixture risk assessment has, in the past, primarily focused on exposures quantified in the external environment. Assessing health risks using human biomonitoring (HBM) data provides information on the internal concentration, from which a dose can be derived, of chemicals to which human populations are exposed. This study describes a proof of concept for conducting mixture risk assessment with HBM data, using the population-representative German Environmental Survey (GerES) V as a case study. We first attempted to identify groups of correlated biomarkers (also known as 'communities', reflecting co-occurrence patterns of chemicals) using a network analysis approach ( n = 515 individuals) on 51 chemical substances in urine. The underlying question is whether the combined body burden of multiple chemicals is of potential health concern. If so, subsequent questions are which chemicals and which co-occurrence patterns are driving the potential health risks. To address this, a biomonitoring hazard index was developed by summing over hazard quotients, where each biomarker concentration was weighted (divided) by the associated HBM health-based guidance value (HBM-HBGV, HBM value or equivalent). Altogether, for 17 out of the 51 substances, health-based guidance values were available. If the hazard index was higher than 1, then the community was considered of potential health concern and should be evaluated further. Overall, seven communities were identified in the GerES V data. Of the five mixture communities where a hazard index was calculated, the highest hazard community contained N-Acetyl-S-(2-carbamoyl-ethyl)cysteine (AAMA), but this was the only biomarker for which a guidance value was available. Of the other four communities, one included the phthalate metabolites mono-isobutyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) with high hazard quotients, which led to hazard indices that exceed the value of one in 5.8% of the participants included in the GerES V study. This biological index method can put forward communities of co-occurrence patterns of chemicals on a population level that need further assessment in toxicology or health effects studies. Future mixture risk assessment using HBM data will benefit from additional HBM health-based guidance values based on population studies. Additionally, accounting for different biomonitoring matrices would provide a wider range of exposures. Future hazard index analyses could also take a common mode of action approach, rather than the more agnostic and non-specific approach we have taken in this proof of concept
    corecore