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Abstract: Chemical mixture risk assessment has, in the past, primarily focused on exposures quanti-
fied in the external environment. Assessing health risks using human biomonitoring (HBM) data
provides information on the internal concentration, from which a dose can be derived, of chemicals
to which human populations are exposed. This study describes a proof of concept for conducting
mixture risk assessment with HBM data, using the population-representative German Environmental
Survey (GerES) V as a case study. We first attempted to identify groups of correlated biomarkers (also
known as ‘communities’, reflecting co-occurrence patterns of chemicals) using a network analysis ap-
proach (n = 515 individuals) on 51 chemical substances in urine. The underlying question is whether
the combined body burden of multiple chemicals is of potential health concern. If so, subsequent
questions are which chemicals and which co-occurrence patterns are driving the potential health risks.
To address this, a biomonitoring hazard index was developed by summing over hazard quotients,
where each biomarker concentration was weighted (divided) by the associated HBM health-based
guidance value (HBM-HBGV, HBM value or equivalent). Altogether, for 17 out of the 51 substances,
health-based guidance values were available. If the hazard index was higher than 1, then the com-
munity was considered of potential health concern and should be evaluated further. Overall, seven
communities were identified in the GerES V data. Of the five mixture communities where a hazard in-
dex was calculated, the highest hazard community contained N-Acetyl-S-(2-carbamoyl-ethyl)cysteine
(AAMA), but this was the only biomarker for which a guidance value was available. Of the other
four communities, one included the phthalate metabolites mono-isobutyl phthalate (MiBP) and
mono-n-butyl phthalate (MnBP) with high hazard quotients, which led to hazard indices that exceed
the value of one in 5.8% of the participants included in the GerES V study. This biological index
method can put forward communities of co-occurrence patterns of chemicals on a population level
that need further assessment in toxicology or health effects studies. Future mixture risk assessment
using HBM data will benefit from additional HBM health-based guidance values based on population
studies. Additionally, accounting for different biomonitoring matrices would provide a wider range
of exposures. Future hazard index analyses could also take a common mode of action approach,
rather than the more agnostic and non-specific approach we have taken in this proof of concept.

Keywords: human biomonitoring (HBM); chemical mixtures; mixture risk assessment; toxicity
weighting; health-based guidance value (HBGV); hazard quotient (HQ); hazard index (HI); biomonitoring
equivalent (BE); HBM4EU
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1. Introduction

The issue of combined exposures to multiple chemicals in humans and the mixture risk
assessment and management of those multiple chemicals have received increasing interest
in the past decades from researchers, policy makers and concerned citizens alike. Clearly,
the human population is exposed to chemical mixtures every day. These exposures originate
from a variety of different sources, and exposures occur through diverse pathways—the
environment, occupation, diet, use of consumer products, cosmetics, medication and
medical implants, and lifestyle factors (e.g., smoking, recreational drugs, tattoo ink). The
resulting exposures are complex as is the risk assessment of these chemical mixtures [1–3].

To move beyond conducting risk assessments ‘chemical-by-chemical’, the European
Commission expressed the ambition to account for the cocktail effect of chemicals when
assessing risks from chemicals, with the overall aim to work towards a zero-pollution
environment [4]. Among others, the Commission aims to introduce or reinforce provisions
to take account of the combination effects in relevant legislations, such as legislation on
water, food additives, toys, food contact materials, detergents and cosmetics. For REACH, it
will be assessed how to best introduce a mixture assessment factor (MAF) for the chemical
safety assessment of substances. EFSA published a guidance providing methodologies
for applying scientific criteria and prioritization methods to group chemicals for human
risk assessment of combined exposures to multiple chemicals [2]. More recently, EFSA
published a roadmap for action on this topic, i.e., the roadmap for action on Risk Assessment
of Combined Exposure to Multiple Chemicals (RACEMiC) [1]. Moreover, EC’s Horizon
2020 Research Programme initiated several chemical-mixtures-related research projects [5].

Despite the increased attention for chemical mixtures, still little effort has been devoted
to assessing the real-life mixture exposures in the (European) population, thus considerably
hampering the mixture risk assessment. HBM4EU, a European Joint Programme funded
under Horizon 2020, addressed real-life chemical mixtures exposures in the context of
human biomonitoring (HBM) [6]. Chemical mixtures (in the context of HBM) here refer
to the common occurrence at the level of the individual of chemical xenobiotic substances
measured in blood, urine or other human materials. The overall aim of the work on
chemical mixtures in HBM4EU was to improve the precision and efficacy of HBM to inform
science, policy and regulatory actions with respect to dealing with mixtures. More specific
objectives were:

1. To develop summary indicators to describe the exposure and body burdens of mix-
tures with an emphasis on defining priority mixtures and drivers of mixture toxicity.

2. To re-evaluate the existing HBM mixture data and collect new HBM mixture data, to
identify real-life exposure patterns to mixtures.

3. To further develop and apply practical approaches to identification and assessment of
the potential health risks and impacts of mixtures.

4. To inform policy makers, stakeholders and the public at large about mixture exposures
and associated health risks.

In this manuscript, we focus on the second and third objective. Our study provides
a proof of concept for prioritizing real-life chemical mixtures to which a population is
exposed by applying the hazard index (HI) methodology on mixtures identified in HBM
data as a first-tier approach to risk assessment of combined exposure to multiple chemicals
(further referred to as ‘mixture risk assessment’). For this, we performed a network analysis
of data from the population-representative German Environmental Survey (GerES) V held
from 2014 to 2017 [7], with the aim to identify patterns in the co-occurrence of chemicals
in HBM data. The underlying question is firstly whether the combined body burden
of multiple chemicals as measured through HBM is of potential health concern. If so,
subsequent questions include which chemicals and which co-occurrence patterns are
driving the potential health risks, i.e., have the highest contribution to the hazard index.
This could help prioritize mixtures for future risk management to reduce the health risks
associated with exposure to these chemicals’ combinations. Here, the network analysis
proves useful to delineate patterns of co-occurrence in HBM data. Network analysis is a
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data-driven approach that identifies dependencies between biomarkers of exposure (for
the parent chemical and/or metabolite(s) thereof) measured in the same individual at the
same point in time [8]. Recent application of network analysis on multiple datasets from
different HBM surveys across Europe [9] confirmed the various opportunities this analysis
has to offer with regard to mixture risk assessment. Firstly, network analysis allows for the
identification of groups of exposure biomarkers (communities) that are more closely related
than others, i.e., the real-life mixtures. Communities give an indication of, on a population
level, which biomarkers have similar concentration patterns. For example, Ottenbros et al.
found that a number of polychlorinated bisphenyl (PCB) compounds tended to cluster
together in a network analysis of the Flemish Environment and Health Survey cord blood
samples [8]. Such patterns might be explained by similar exposure patterns or similarity
in toxicokinetics, and would be cause for concern in risk assessment when characterized
by more than additive toxicity. Secondly, it allows for the identification of determinants
that may explain observed variation of patterns in exposure biomarkers. Furthermore, it
allows for ranking of individuals based on their cumulative burden of exposure, making
the network analysis of HBM data a highly valuable tool for mixture risk assessment.

Mixture risk assessment is complex and typically very demanding in terms of resources
and time. Hence, insight into which of the real-life mixtures is of higher concern would be
highly valuable. Therefore, in this study, the co-occurrence patterns in GerES V identified
through network analysis were weighted using HBM health-based guidance values (HBM-
HBGVs) or equivalents developed and/or collected under the HBM4EU project. This
resulted in a ‘biomonitoring hazard index’, which greatly facilitates the identification of
chemical mixtures that need to be prioritized for human health risk assessment. This
paper describes the methodologies applied, presents and discusses the results obtained
and reflects on the potential application of the biomonitoring hazard index approach for
mixture risk assessment.

2. Materials and Methods

Study data: The German Environmental Survey for children and adolescents 2014–2017
(GerES V) is a population-representative cross-sectional study carried out to determine the
exposure of the general population in Germany to pollutants and their sources. GerES V
investigated children and adolescents by determining, on a representative basis, the body
burden of environmental pollutants and the exposure to pollutants at home. It was per-
formed in a stratified randomly selected sample consisting of 2294 children and adolescents
aged 3 to 17 years and living in 167 different sampling locations in Germany [7,10].

In GerES V, different substances were measured in subsets of participants. Although
GerEs V included both blood and urine sampling, these were not collected at the same time.
Rather, they were collected approximately six months apart, on average. We therefore chose
to base our analysis on one matrix. To avoid high proportions of missing data, urinary
biomarkers available for all participants and additional urinary biomarkers available in a
subgroup of GerES V participants (n = 515) aged 3 to 17 years were included in this analysis.
All urinary biomarkers were measured in first-morning void urine samples.

The following HBM4EU priority substances were available in first-morning void urine
samples in the subsample of 515 participants: cadmium (Cd), chromium (Cr), mercury (Hg),
phthalates, Di-isononyl cyclohexane-1,2-dicarboxylate (DINCH), bisphenol A, polyaromatic
hydrocarbons (PAHs), acrylamide, pesticides, aprotic solvents (n-ethyl-pyrrolidone; n-
methyl-pyrrolidone), UV-filters (benzophenones (BP)). In addition, the following non-
HBM4EU substances were included: antimony (Sb), selenium (Se), parabens, lysmeral and
CIT/MIT (methylchloroisothiazolinone/methylisothiazolinone). The methods of analysis
for all biomarkers can be found in [11].

Eleven biomarkers were excluded from the network analyses because over 40% of
the measurements were below the Limit of Quantification (LOQ). These include phthalate
metabolites mono-n-octyl phthalate (MnOP), mono-n-pentyl phthalate (MnPeP), mono-
cyclohexyl phthalate (MCHP), mono(propyl-6-hydroxyheptyl) phthalate (OH-MPHP),
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mono-(2-propyl-6-carboxyhexyl) phthalate (cx-MPHP); aprotic solvents (N-Ethyl-2 pyrroli-
done, NEP) metabolite 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP), the pesticide glyphosate
and its metabolite aminomethylphosphonic acid (AMPA) and the UV-filter metabolites of
benzophenone (BP-1 and BP-3). As a result, a total of 51 substances were included in the
network analyses (see Table S1).

Establishing a database of HBM-HBGVs: For toxicity weighting, we first compiled a
database of HBM-HBGVs and equivalents, first focusing on HBM4EU priority substances
identified by the HBM4EU chemicals prioritization strategy [12]. Various HBM-HBGVs
derived under the HBM4EU project have been derived and published [13–17]. Subsequent
focus was on the subset of 51 biomarkers (Table S1) that were further prioritized for the
study presented here (see above).

For these 51 biomarkers a scoping review was conducted targeted towards HBM-
HBGVs or equivalents, preferably derived by (but not limited to) European or national
agencies, organizations or commissions, such as the German Human Biomonitoring Com-
mission [18], ANSES (the French Agency for Food, Environmental and Occupational Health
and Safety) or Health and Safety Executive (UK). Guidance values for substances that were
not available through agencies in Europe, or that were considered interesting for compari-
son purposes, were sourced from similar-type organizations outside the region, e.g., US
Environmental Protection Agency (US EPA), US Agency for Toxic Substances and Disease
Registry (ATSDR) and New Zealand Government—WorkSafe. Descriptions of the different
types of guidance values are described in the Supplementary material (Table S2).

Guidance value selection: For the substances in the network analyses, HBM-HBGVs
were matched on urine, dimension and, if applicable, creatinine standardization. Where
appropriate, matching on age-group was performed. For DEHP and DINCH only HBM-
HBGVs for the sum of metabolites were available. Two HBM-HBGVs for different DEHP
metabolite sums were used per individual, and the higher hazard quotient was chosen.
Where no HBM-HBGVs existed, alternative indicators, e.g., Biomonitoring Equivalent (BE),
were used.

Network analysis: The data preparation steps for the network analysis involved:
(a) checking the distribution of the variables; (b) transforming the data if needed; (c) imputation
of the data points below the LOD or LOQ (Limit of Detection; Limit of Quantification);
(d) correction for outliers; (e) standardization around zero and (f) scaling of the data. Con-
centrations of biomarkers were natural-log-transformed because HBM distributions are
typically skewed. Network analyses were performed as previously described [8,9].

Unweighted network analysis was used to describe the conditional independence
between multiple variables, making use of the packages huge and igraph, using R (v3.5.0
or higher) [19,20]. Within these networks, a node or dot represents a biomarker, and an
edge or line between two nodes reflects the conditional dependency between these two
biomarkers given all other variables.

The graph estimation was conducted using the graphical lasso, which involves pe-
nalized maximum likelihood estimation [21]. This method is a simple and fast algorithm
for estimation of a sparse inverse covariance matrix using an L1 penalty. The graphical
lasso cycles through the variables, fitting a modified lasso regression to each variable in
turn. Regularization of the graph was conducted along a sequence of 10 equally spaced
lambdas ranging from the maximum lambda (resulting in an empty graph) to the minimum
lambda set at 10% of the maximum lambda. Optimal lambda selection was conducted
using the stability approach to regularization selection method (StARS), which selects the
optimal lambda by variability across subsamples [22]. Variability (or instability) across
subsamples is defined as the fraction of times (range: 0–0.5) that two graphs disagree
on the presence of an edge, averaged over all edges in the graphs. We used the default
variability threshold of 0.1. Within the selected network, the walktrap clustering algorithm
from the igraph package was used, which performs random walks (in default of 4 steps)
across the network to merge separate communities in a bottom-up manner [23–25]. Nodes
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were colored according to the community they were assigned to; edges linking different
communities were colored in red, edges within a community were colored in black.

The actual network analysis was performed on a partial correlation matrix. Therefore, a
strategy for dealing with missing data is required. Thus, an (arbitrary) cut-off of a maximum
of 40% of HBM levels below the LOD/LOQ (level of detection/level of quantification) was
applied. Substances with more than 40% of the measured HBM values below LOD/LOQ
were excluded from further analysis. For the included substances, missing values below
LOD/LOQ were imputed based on a maximum likelihood estimation via single conditional
imputation, dependent on observed values for the other biomarkers. Missing values in
biomarkers (completely missing, e.g., due to insufficient sample volume) were imputed by
using a single imputation strategy using the R package mice. Observed values were used
as prediction matrix for single imputation of the biomarkers (completely missing, e.g., due
to insufficient blood volume), using linear regression.

For the network analysis, a correction for creatinine level was performed, to take into
account the dilution level of spot or morning urine samples; the dilution level could affect
the correlation structure with other substances measured in urine. In addition, we corrected
for sex, creatinine, smoking status, age, education, BMI.

Toxicity weighting approach: The simplest approach for estimating the combined effect
of different components of a chemical mixture is the hazard index (HI) approach, which
assumes dose additivity [3]. Note that dose additivity in this first screening exercise was
not a requirement for inclusion of a substance in the HI. To derive the HI of a chemical
mixture, a Hazard Quotient of each chemical component (HQi) is calculated by scaling
the estimated exposure or dose of the component in the population by a level of exposure
considered safe or acceptable. For the HI, creatinine-corrected HBM concentrations were
used in cases where HBM-HBGVs were creatinine-corrected, and uncorrected values were
used where HBM-HBGVs were not creatinine-corrected. The biological hazard quotient for
component (HQI) i of the mixture is therefore:

HQi =
∑n

j=1 Cij

HBM − HBGVi

where Cij = the exposure biomarker concentration to component i of the mixture for the jth
individual in the population; n = the total population; HBM-HBGVi = the guidance value
for the ith component of the mixture.

The Hazard Index (HI) of the chemical mixture is then calculated by summing the
respective n hazard quotients:

HI =
n

∑
i=1

HQi

An HQ or HI value > 1 indicates that exposure to the substance is greater than a
threshold level of concern and warrants further investigation.

3. Results
3.1. Database of HBM-HBGVs

The different types of HBM-HBGVs that were included in the database are described in
Table S2. These comprise HBM-GVGenPop and HBM-GVworker that were derived within the
HBM4EU project as well as HBM-I and HBM-II values. The former (HBM-GVGenPop HBM-
GVworker) are equivalent to the HBM-I values from the German Human Biomonitoring
Commission [26] and refer to the concentrations in biological media at which no health risk
is expected to occur, unlike HBM-II values that represent concentrations above which there
is an increased risk for adverse health effects.

Where HBM-HBGVs for a priority substance were not be identified, biomonitoring
equivalent (BE) values were obtained from the peer-reviewed literature. BE values are
typically derived from pharmacokinetic data to estimate the concentration of a chemical or
its metabolite in biological media that is consistent with an existing health-based exposure
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guidance value (e.g., tolerable daily intake). They are intended for use as screening tools to
provide an assessment of which chemical biomarkers are present at levels well below, near,
at or above health risk-based exposure concentrations [27].

Workplace guidance values that are concerned with occupational exposures were
also obtained; however, these were only considered where HBM-HBGVs and BE guidance
values were not available. Given that their derivation considers workplace-specific cir-
cumstances with regard to exposure concentrations and patterns, these are considered less
relevant for the general population, particularly the children and adolescents which were
analyzed here but were used as part of the demonstration of proof-of-concept.

Altogether, HBM-HBGVs were obtained for 20 of the 51 prioritized biomarkers (repre-
senting 17 parent substances). For 15 of these, the environmental-based guidance values
were obtained, while for two biomarkers (1-hydroxypyrene and total chromium), only
occupational HBGVs were available. Multiple HBGVs were identified for most biomarkers
(n = 16) with most of these being biological equivalents. When multiple HBGVs were
available, the lowest value from an authoritative government agency source for the appro-
priate population was used. We prioritized sources of HBGVs based on our confidence
in the comprehensiveness of the review process: HBM4EU, European regulatory agency,
other national regulatory agency and finally biological equivalents. Because the latter
are conducted without any committee review or agreements, these are likely the most
uncertain values. The HBM-HBGVs used for calculating the hazard quotients are shown
in Table 1. The information collected on each biomarker of interest along with the type
of guidance value can be found in the database of health-based values included in the
supplementary material Table S3 (Excel file).

Table 1. Guidance value used for the toxicity weighting.

Substance (Biomarker) Value Type Ref.

BBzP (MBzP) 2000 µg/L HBM-GV(GenPop) [14]
DiBP (MiBP) 160 µg/L HBM-GV(GenPop) [14]
DnBP (MnBP) 120 µg/L HBM-GV(GenPop) [14]
DEHP Sum 1 (OH-MEHP + oxo-MEHP) 340 µg/L HBM-GV(GenPop) [14]
DEHP Sum 2 (OH-MEHP + cx-MEPP) 380 µg/L HBM-GV(GenPop) [14]
DINCH Sum (oxo-MINCH + cx-MINCH) 3000 µg/L HBM-GV(GenPop) [14]
DPHP (oxo-MPHP) 190 µg/L HBM-GV(GenPop) [14]
DEHTP (cx-MEPTP) 1800 µg/L HBM-I [18]
Mercury 7 µg/L HBM-I [18]
Cadmium (Cd) 0.1 µg/g creatinine HBM-GV, 10 years and younger [17]
Cadmium (Cd) 0.2 µg/g creatinine HBM-GV, 11–20 years [17]
Bisphenol A 135 µg/L HBM-GV(GenPop) [17]
NMP Sum (5-HNMP +
2-HMSI) 10,000 µg/L HBM-GV(GenPop) [17]

Pyrene (1-OH-Pyr) 4 µmol/mol creatinine BMGV(working population) [28]
Chromium (Cr) 10 µmol/mol creatinine BMGV(working population) [28]
Acrylamide (AAMA) 13 µg/L BE [29]
Arsenic (As total = sum of inorganic As, DMA, MMA) 6.4 µg/L BE [30]
Selenium (Se) 90 µg/L BE [31]

Abbreviations: MBzP (mono-benzyl phthalate), MiBP (mono-isobutyl phthalate), MnBP (mono-n-butyl phthalate),
5OH-MEHP (mono(2-ethyl-5-hydroxy-hexyl) phthalate), 5oxo-MEHP (mono(2-ethyl-5-oxo-hexyl) phthalate),
oxo-MINCH (cyclohexane-1,2-dicarboxylate-mono-(7-oxo-4-methyl)octyl ester), cx-MINCH (cyclohexane-1,2-
dicarboxylate-mono-(7-carboxylate-4-methyl)heptyl ester), oxo-MPHP (6-Oxo-Mono-propyl-heptyl phthalate),
5cx-MEPTP (1-mono-(2-ethyl-5-carboxyl-pentyl) benzene-1,4-dicarboxylate), 5-HNMP (5-hydroxy-N-methyl-2-
pyrrolidone), 2-HMSI (2-hydroxy-N-methylsuccinimide).

3.2. Network Analysis and Toxicity Weighting
3.2.1. Network Analysis

Figure 1 shows the resulting patterns of co-occurring chemicals (depicted in differ-
ent colors) from the network analysis of the subsample of 515 participants from GerES
V when adjusting raw concentrations for creatinine, controlling for creatinine and basic
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determinants in multivariate analyses in addition. These patterns are referred to as ‘com-
munities’. Several substances were not part of any community, such as some elements
(mercury, inorganic arsenic, cadmium), bisphenol A (BPA) and the phthalate MEP. A total
of eight communities consisting of three or more substances were observed. These eight
communities (mainly) comprised two communities of phthalate metabolites (I, dark grey,
and II), DINCH metabolites (III), polycyclic aromatic hydrocarbons (PAHs) (VI), parabens
and lysmeral (TBBA) (V), aprotic solvent HNMP, NMMA, acrylamide, its metabolite glyci-
damide and benzene and its metabolite S-phenyl-mercapturic acid (SPMA) (VII), DEHTP
metabolites (VIII), selenium, chromium, antimony and aprotic solvent HMSI (IV). Among
the phthalate communities, MMP co-occurred together with BBzP and DnBP and DiBP
metabolites (I), while DEHP metabolites co-occurred with propylheptyl phthalate (PHP)
and DiNP and DiDP metabolites (II). Thus, communities often reflected the expected co-
occurrence of parent chemicals and their metabolites and/or substances from the same
chemical family. Additionally, however, also a few communities comprising chemicals
from different families were observed.
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HBM-HBGVs or equivalents are present. Black lines indicate dependency between nodes (biomark-
ers) within a community; red lines indicate dependency between nodes in different communities.
Chemicals: Cd: cadmium, Cr: total chromium, hg: Mercury (total)), Sb: antimony, Se: Selenium, As:
total arsenic, HNMP: (5-hydroxy-N-methyl-2-pyrrolidone), HMSI: (2-hydroxy-N-methylsuccinimide),
HESI: (2-hydroxy-N-ethylsuccinimide), AAMA: (N-Acetyl-S-(2-carbamoyl-ethyl)cysteine), GAMA:
(N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)cysteine), TBBA: Tetrabromobisphenol A, NMMA: N-
Methylacetamide, OH-MEHTP: (1-mono-(2-ethyl-5-hydroxy-hexyl) benzene-1,4-dicarboxylate), oxo-
MEHTP: (1-mono-(2-ethyl-5-oxo-hexyl) benzene-1,4-dicarboxylate), cx-MEPTP: (1-mono-(2-ethyl-5-
carboxyl-pentyl) benzene-1,4-dicarboxylate), cx-MINCH: (cyclohexane-1,2-dicarboxylate-mono-(7-
carboxylate-4-methyl)heptyl ester), OH-MINCH: (cyclohexane-1,2-dicarboxylate-mono-(7-hydroxy-4-
methyl)octyl ester), oxo-MINCH: (cyclohexane-1,2-dicarboxylate-mono-(7-oxo-4-methyl)octyl ester),
MEHP (Mono(2-ethylhexyl) phthalate), OH-MEHP: (Mono(2-ethyl-5-hydroxy-hexyl) phthalate),
oxo-MEHP: (Mono(2-ethyl-5-oxo-hexyl) phthalate), cx-MEPP: (Mono(2-ethyl-5-carboxy-pentyl) ph-
thalate), MBzP: (Mono-benzyl phthalate), MnBP: (Mono-n-butyl phthalate), OH-MnBP: (3-OH-Mono-
n-butyl phthalate), MiBP: (Mono-isobutyl phthalate), OH-MiBP: (2-OH-Mono-iso-butylphthalate),
MEP: (Mono-ethyl phthalate), OH-MiNP: (7-OH-(Mono-methyl-octyl) phthalate), oxo-MiNP: (7-Oxo-
(Mono-methyl-octyl) phthalate), cx-MiNP: (7-Carboxy-(mono-methyl-heptyl) phthalate), OH-MiDP:
(6-OH-Mono-propyl-heptyl phthalate), oxo-MiDP: (6-Oxo-Mono-propyl-heptyl phthalate), cx-MiDP:
(Mono(2,7-methyl-7-carboxy-heptyl) phthalate), MMP: (Mono-methyl phthalate), BHT: Butylated
hydroxytoluene, SPMA: N-acetyl-S-phenyl-L-cysteine, oxo-MPHP: (6-Oxo-Mono-propyl-heptyl ph-
thalate), oneohnap: 1-NAPH (1-hydroxynaphthalene), twoohnap: 2-NAPH (2-hydroxynaphthalene),
twohfluo: 2-FLUO (2-hydroxyfluorene), onehphe: 1-PHEN (1-hydroxyphenanthrene), twohphe:
2-PHEN (2-hydroxyphenanthrene), threehphe: 3-PHEN (3-hydroxyphenanthrene), fourhphe: 4-
PHEN (4-hydroxyphenanthrene), ninehphe: 9-PHEN (9-hydroxyphenanthrene), ohpyr: 1-PYR (1-
hydroxypyrene), MeP: methylparaben, EP: Ethylparaben, bpa: BPA total (Bisphenol A).

3.2.2. Toxicity Weighting

The first underlying question in this work was whether the combined body burdens
of the 51 substances were of potential health concern. A comparison with available HBM-
HBGVs or equivalents was possible for less than half of the substances, which led to
the calculation of an HI across 20 substances. The resulting HIs (Figure 2) exceed the
value of one in 100% of individuals. Thus, with less than half of the measured substances
incorporated in the HI, already all subjects had an HI that warrants further investigation.
Hence the subsequent question is “which exposures in the HBM data drive the high HI
values above 1?” When we look closer at the drivers of the hazard index in the whole
population, we see that arsenic and acrylamide are responsible for excessive HI values that
decrease by factor 10 when they are removed from the sum (Figure 2). Arsenic was not part
of any co-occurrence community. Acrylamide was part of community VII; however, there
were no other biomarkers in that community for which a guidance value was available at
the time. Therefore, it is not possible to say whether additional biomarkers would have
also contributed to the HI for that particular community.

Of the remaining communities, community I contains the phthalate metabolites MiBP
and MnBP with high hazard quotients (see also Figure 4), which leads to HI values that
exceed the value of one in 5.8% of the individuals studied (Figure 3). With regard to MiBP
(mono-isobutyl phthalate), exceedance of the HBM-HBGVs (resulting in an HQ value > 1)
was observed for a small fraction (2.3%, 12 of 515) of the population studied, while one
out of 515 exceeded HQ > 1 for MnBP. Community IV comprises, among others, the
substances chromium and selenium. As shown in Figure 3, using a BE and a BMGV for
calculating the hazard quotients resulted in HI values below one in nearly all participants,
i.e., HI values > 1 was observed for 1.9% of the individuals studied. In contrast, the HI
values obtained for communities II and III, comprising four phthalate metabolites and two
DINCH metabolites, respectively, remained well below the value of 1 (Figure 3). Hence,
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within the current dataset and via the network analysis, in addition to single chemicals, the
communities VII and I would pose the highest concern and thus should be given priority
when addressing health risks related to combined exposure to multiple chemicals.
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Figure 3. Distribution of hazard indices for communities I to IV. The red line indicates the value of 1.
For communities I and IV, a small fraction of the population exceeds an HI value of 1.

Individual HQ values for substances involved in communities I to IV are shown in
Figure 4. Figure 5 depicts the individual HQ values for substances that were not part
of a community or were the only substances in that community for which a guidance
value (HBM-HBGV or equivalent) was identified. It can be seen from Figure 5 that AAMA
(acrylamide metabolite) had the highest HQ values.



Toxics 2023, 11, 408 10 of 16
Toxics 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 4. Distribution of individual hazard quotients (HQs) for the substances that are involved in 

communities I to IV. For DEHP and DINCH, the available HBM-HBGVs for the sums were used 

(oxo-MEHP, cx-MEPP, OH-MEHP and cx-MINCH, oxo-MINCH, respectively). MiBP (Mono-isobu-

tyl phthalate), MnBP (Mono-n-butyl phthalate), MBzP (Mono-benzyl phthalate), DEHP (Bis(2-

ethylhexyl) phthalate), oxo-MPHP (6-Oxo-Mono-propyl-heptyl phthalate), DINCH (1,2-Cyclohex-

ane dicarboxylic acid diisononyl ester). 

Figure 4. Distribution of individual hazard quotients (HQs) for the substances that are involved in
communities I to IV. For DEHP and DINCH, the available HBM-HBGVs for the sums were used
(oxo-MEHP, cx-MEPP, OH-MEHP and cx-MINCH, oxo-MINCH, respectively). MiBP (Mono-isobutyl
phthalate), MnBP (Mono-n-butyl phthalate), MBzP (Mono-benzyl phthalate), DEHP (Bis(2-ethylhexyl)
phthalate), oxo-MPHP (6-Oxo-Mono-propyl-heptyl phthalate), DINCH (1,2-Cyclohexane dicarboxylic
acid diisononyl ester).
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Figure 5. Distribution of individual hazard quotients (HQs) for substances that were not members of
a community (see Figure 1) or were the only substances in that community for which a guidance value
(HBM-HBGV or equivalent) was identified. The HQs for arsenic and acrylamide are based on BEs
(biomonitoring equivalents), the HQ for chromium is based on a BMGV, while the HQs for cx-MEPTP
(1-mono-(2-ethyl-5-carboxyl-pentyl) benzene-1,4-dicarboxylate), NMP (N-methyl-2-pyrrolidone),
pyrene, cadmium, mercury and bisphenol A are based on HBM-HBGVs.

4. Discussion

In this study, a novel concept for using the HI methodology to identify exposure to
mixtures that may be of concern from a public health perspective has been demonstrated.
We first identify real-life mixtures as communities of co-occurring chemicals through a
network analysis of HBM data, and then apply toxicology-based biomonitoring guidance
values to gauge the hazard potential of, and thus rank, newly discovered real-life mixtures.

In the first screening, the overall HI (for the 17 substances with an available guidance
value combined) exceeded the value of one in 100% of the studied population, indicating
that all people had exposures of concern. It should be noted that this HI is calculated
across less than half of the chemicals measured in the study participants. Rather than
subsequently examining compound by compound whose biomarkers drive the HI to be
above one, we chose to use the network analysis to identify mixture communities. Identi-
fying communities of patterns of real-life co-occurring chemicals adds value by allowing
prioritization and focus on those co-occurrence patterns that have the highest HIs. This is
one of the first studies to derive HIs based on real-life mixture exposures across multiple
chemical families. Four of the seven communities derived from the network analysis had
HIs of concern based on more than two HQs; however, due to the lack of guidance values
for all compounds evaluated, we do not know if there would have been more communities
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or compounds which could lead to higher HI or HQ values. Community VII contained
acrylamide metabolites AAMA and GAMA along with metabolites from aprotic solvents
and benzene. Although we could not calculate other HQs for this community due to the
lack of biomonitoring guidance values, based on AAMA, this community would already be
of concern. Additionally, based on our analysis, we might prioritize evaluation of exposure
to phthalates as a group, rather than the individual phthalates with high HQs, as we know
that these chemicals tend to occur together in the human body.

In our network analysis of GerES V, in community I, a small percentage (5.8%) of
individuals had HI values greater than one, while community II had HI values well below
one. The substances in these two communities were primarily phthalate metabolites. Of
the metabolites, MiBP (parent compound DiBP) had an HQ greater than one in 12 out of
515 individuals, while MnBP (parent compound DnBP) had an HQ greater than one in one
out of 515 individuals. In a study by Lange et al. of cumulative exposure to phthalates
from a combined group of studies, including GerES V, in a similar population of children
and adolescents, DnBP and DiBP contributed the most to the HIs. The geometric mean
HI of the GerES V population was 0.44, with the 95th percentile HI of 1.77 [32]. This is
similar to our study where the geometric mean HI was 0.36, and 95th percentile was 1.09.
The Lange et al. study also concluded that over half of children and adolescents across
Europe have phthalate mixture exposures which are driven by multiple compounds in the
mixture, rather than single substances. Next steps aimed at reducing health risks should,
in our view, focus on possible sources of (combined) exposure and exposure routes as well
as opportunities for reducing exposure.

Lange et al. only evaluated phthalate mixtures. Our study also identified other
communities through the network analysis, but due to the lack of established HBM-HBGVs,
we could use the HI approach only for a few other communities. These include a community
comprising metabolites of the phthalate substitute DINCH and a community that consists
of selenium and chromium (plus antimony and the aprotic solvent metabolite HMSI). For
the latter community, a small proportion of the individuals studied had an HI greater than
one. Given that only two of the four substances in this community were included in the
toxicity weighting, this combination of chemical substances should be further investigated.
Again, better insight into possible exposure routes and sources of combined exposure will
help to identify risk management options.

HBM-HBGVs (or equivalents) were available for less than half of the measured HBM
levels, which leads to an underestimation of HIs of the actual communities. Missing
HBGVs for members of the community present a problem and can cause the hazard to be
underestimated. Of the 51 priority HBM4EU substances, 17 substances, represented by
20 biomarkers (see Table 1) had an HBGV. Of the eight communities shown in Figure 1, six
had at least one HBGV, but two communities had only one HBGV, due to which, it was
not possible to evaluate the mixture toxicity. Incorporating available BE values improved
the coverage, but only by adding three more substances. For the large community studied
in this network, about 50% of the biomarkers had an associated HBGV value. While the
complete hazard indices of the communities cannot be calculated with missing values, using
an incomplete set and still finding exceedance are a reason for concern and requires further
investigation. HBGVs may also change as information on chemicals changes—which
means that the HIs may differ depending on the HBGVs used. Incorporation of metabolites
is also something to be considered, as HBGVs may not be available for all metabolites of a
parent compound or may only be available for the sum of compounds.

Two individual compounds indicated high risks. These were arsenic and acrylamide.
The main source of both acrylamide and arsenic for the general population is diet. Acry-
lamide is formed when starchy foods are cooked, particularly baked, fried, or roasted. The
European Food Standards Agency’s (EFSA) risk assessment for this substance indicates
that exposure could potentially raise cancer risks [33]. For arsenic, various types of food
can contain arsenic. Seafood contributes greatly to exposure for certain forms of organic
arsenic (arsenobetaine), but this is generally considered of less concern. A study of arsenic
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exposure for the German population estimated that, for infants and children, the majority
of their exposure would come from the grains, especially rice-based products [34]. For
adolescents, coffee, teas and infusions also contributed a large percent to exposure. High
exposure to arsenic may occur in certain areas where groundwater has high arsenic content.
However, this is unlikely to be influential at the population level.

Arsenic was not highly correlated with exposure to other substances, but acrylamide
was in a community that included other substances, particularly benzene (metabolite
SPMA), CIT/MIT (metabolite NMMA) and aprotic solvent NMP (metabolite HNMP),
although biomonitoring guidance values were not identified for these. There is a possibility
that the HI for this community may be even higher, with additional biomarkers contributing
to the HI.

The derivation of HBM-HBGVs is an area of uncertainty. To reduce this, we prioritized
guidance values issued by HBM4EU, or government regulatory agencies, because these
have undergone extensive evidence review, including studies in humans and animals.
However, even with values derived from human studies, two biomarkers, pyrene and
chromium, were from occupational guidance values, which would likely be too high for the
population in our study, which were children and adolescents. In three cases, we included
biomonitoring equivalents, which are estimated using modelling approaches to estimate
how maximum tolerable daily intakes would translate into biomonitoring values. BEs are
not necessarily derived based on committee review, as those are set by regulatory agencies,
and therefore were only used if a regulatory guideline was not available. The guidance
values for arsenic and acrylamide, the two substances with HQs greater than one in much
of the population, were derived from biomonitoring equivalents. However, while the BE
for arsenic was based on data from studies of human populations, that of acrylamide was
based on animal studies [30].

In general, the robustness of a BE depends on the quality and relevance of the exposure
guidance values and pharmacokinetic data used in its derivation. In the case of arsenic, the
uncertainty factors associated with the three exposure guidance values that were available
for the BE calculation ranged from 3 to 10. For acrylamide, the uncertainty associated with
the use of animal-based studies only would be the concern. Similarly, for cadmium and
selenium, we also used BEs for the guidance values, but these were not risk drivers with
substantial contributions to the HI.

One approach around the lack of HBM-HBGVs is to estimate exposure intakes from
biomarker values and use reference doses (RfDs) to calculate the HQs and HI, as Ko-
rtenkamp et al. did for a variety of substances related to declining semen quality [35].
However, this presents similar issues as with BEs, as the certainty depends on the relevance
of RfDs to human data and the quality of the pharmacokinetic data. For calculation of
exposure HIs, the use of biomonitoring data allows us to better evaluate the actual internal
exposure mixtures, which may differ from those estimated from external exposure models.
Therefore, the use of a comparable reference value (i.e., one based on biomonitoring data in
humans) would be preferable.

Another way in which HBM-HBGVs could be derived is through adjustment of
occupational values, as there are more biological exposure indices or guidance values for
occupational settings than for the general population. These could be scaled for different age
groups, accounting for differences in metabolism and duration of exposure. For children, a
sensitivity factor could be added due to the potential vulnerability of the developing body
compared to an adult. This adjustment effort could be implemented through an official
review committee, similar to those which have derived the guidance values we have used
in Table 1 and referenced in Table S2.

The HI approach assumes that the cumulative effect of the doses of each mixture
component is additive, and that different substances have a common mode of action with a
common health outcome. However, it can be reasonably assumed that HBM-HBGVs for dif-
ferent chemicals are derived based on different health effects and different modes of action.
Our approach does not consider any commonality in the mode of action or health outcome,
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and might therefore be considered relatively conservative. Thus, the results should be in-
terpreted with caution. Should effects be common and synergistic, the hazard index would
underestimate mixture toxicity, and should effects be antagonistic, the opposite would be
true. Thus far, however, synergistic or antagonistic effects have been rarely reported. For
mixture communities where HI exceeds one, further examination of toxic effects should be
evaluated, such as considering the mode of action of each component and common health
endpoints. In addition, various uncertainty factors may be applied in the derivation of
guidance values, adding to the difficulty in comparing HQs. A point of departure index
(PODI) approach, e.g., no or low observed adverse effect level (NOAEL/LOAEL), may
provide a more robust approach to calculate HQs.

This proof-of-concept study shows that toxicity weighting can be applied at the
level of identified communities, but the ability to effectively use this for chemical risk
assessment is limited by the lack of HBGVs. Coupling the HI approach with a method
for finding exposure-related co-occurrence patterns in population HBM data allows us to
better prioritize between mixtures for risk management. An approach with wider coverage
of toxicity weights is needed. The approach suggested by Zhao and co-workers [36],
where they used text mining approaches, bringing together data from multiple toxicity
and exposure databases, may prove fruitful for better coverage. However, the data in that
database are mainly from animal experiments from a wide range of different experimental
designs, tests and assays, which may make comparison to HBM values less appropriate.

This hazard index approach would be particularly beneficial in situations where there
are population-level biomonitoring programs. In Kolossa-Gehring 2023, the HBM4EU coor-
dinator lays out lessons learned from the program for the success of future biomonitoring
programs. Four points are emphasized: (1) the need for a clear and well-defined consor-
tium agreement, (2) a clear role for national government policy-makers in the program’s
governance, (3) the need for a well-organized and financed scientific governance structure
and (4) a clear and equal set of funding rates for all activities [37]. Future work should
prioritize the generation of human-biomonitoring-based guidance values. Additionally,
there needs to be consideration of how to deal with multiple metabolites, and matrices, for
substance biomonitoring.
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