174 research outputs found

    Low back pain, the stiffness of the sacroiliac joint: A new method using ultrasound

    Get PDF
    Abnormal biomechanical properties of the sacroiliac joints are believed to be related to low back and pelvic pain. Presently, physiotherapists judge the condition of the sacroiliac joints by function and provocation tests, and palpation. No objective measuring device is available. Research is ongoing to identify the biomechanical properties of the sacroiliac joints from the dynamic behaviour of the pelvic bones. A new concept based on ultrasound (US) for the measurement of bone vibration is under investigation. The objective of this study was to validate this concept on a physical model and to assess the applicability in vivo. A model consisting of a piezo shaker covered by a layer of US transmission gel (representing bone and soft tissue) has been used. A packet of US detection signals is directed onto the shaker and correlation-based processing is used to estimate the difference in time-of-flight of their echoes. These variations of time are used to compute the displacement of the shaker at each pulse reflection. To assess the validity of our US technique, we compared the obtained measurements with the readings of the built-in strain gauge sensor. The experimental procedure has been tested on a volunteer where low-frequency excitation was provided through the ilium and vibration detected on the sacrum and ilia. The results demonstrated that the correlation-based approach is capable of reproducing the piezo shaker displacements with high accuracy (± 7%). Vibration amplitudes from 0.25 μm to 3 μm could be measured. The US technique was able to detect bone vibration in vivo. In conclusion, the principle based on US waves can be used to develop a new measurement tool, instrumental in studying the relation between the biomechanical properties of the sacroiliac joints and low back pain

    Impact of long-term exposure to PM2.5 on peripheral blood gene expression pathways involved in cell signaling and immune response

    Get PDF
    Background: Exposure to ambient air pollution, even at low levels, is a major environmental health risk. The peripheral blood transcriptome provides a potential avenue for the elucidation of ambient air pollution related biological perturbations. We assessed the association between long-term estimates for seven priority air pollutants and perturbations in peripheral blood transcriptomics data collected in the Dutch National Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA) cohorts. Methods: In both the discovery (n = 2438) and replication (n = 1567) cohort, outdoor concentration of 7 air pollutants (NO2, NOx, particulate matter (PM2.5, PM2.5abs, PM10, PMcoarse), and ultrafine particles) was predicted with land use regression models. Gene expression was assessed by Affymetrix U219 arrays. Multi-variable univariate mixed-effect models were applied to test for an association between the air pollutants and the transcriptome. Functional analysis was conducted in DAVID. Results: In the discovery cohort, we observed for 335 genes (374 probes with FDR < 5 %) a perturbation in peripheral blood gene expression that was associated with long-term average levels of PM2.5. For 69 genes pooled effect estimates from the NTR and NESDA cohorts were significant. Identified genes play a role in biological pathways related to cell signaling and immune response. Sixty-two out of 69 genes had a similar direction of effect in an analysis in which we regressed the probes on differential PM2.5 exposure within monozygotic twin pairs, indicating that the observed differences in gene expression were likely driven by differences in air pollution, rather than by confounding by genetic factors. Conclusion: Our results indicate that PM2.5 can elicit a response in cell signaling and the immune system, both hallmarks of environmental diseases. The differential effect that we observed between air pollutants may aid in the understanding of differential health effects that have been observed with these exposures

    Датчики интегральной поглощенной дозы ионизирующего излучения на основе МОП-транзисторов

    Get PDF
    Определены требования к конструкции технологии изготовления р- и n-канальных МОП-транзисторов с толстым слоем оксида, предназначенных для применения в качестве интегральных дозиметров поглощенной дозы ионизирующего излучения.Визначено вимоги до конструкції та технології виготов лення р-канальних та n-канальних МОП-транзисторів із тоѕстим шаром оксиду, призначених для вжитку як інтегральні дозиметри поглинутої дози іонізуючого випромінення. Розроблено технологію створення радіаційно-чутливих МОП-транзисторів з товстим шаром оксиду в р-канальному и в n-канальному вариантах.The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created

    Design and effects of outcome-based payment models in healthcare: a systematic review

    Get PDF
    Introduction: Outcome-based payment models (OBPMs) might solve the shortcomings of fee-for-service or diagnostic-related group (DRG) models using financial incentives based on outcome indicators of the provided care. This review provides an analysis of the characteristics and effectiveness of OBPMs, to determine which models lead to favourable effects. Methods: We first developed a definition for OBPMs. Next, we searched four data sources to identify the models: (1) scientific literature databases; (2) websites of relevant governmental and scientific agencies; (3) the reference lists of included articles; (4) experts in the field. We only selected studies that examined the impact of the payment model on quality and/or costs. A narrative evidence synthesis was used to link specific design features to effects on quality of care or healthcare costs. Results: We included 88 articles, describing 12 OBPMs. We identified two groups of models based on differences in design features: narrow OBPMs (financial incentives based on quality indicators) and broad OBPMs (combination of global budgets, risk sharing, and financial incentives based on quality indicators). Most (5 out of 9) of the narrow OBPMs showed positive effects on quality; the others had mixed (2) or negative (2) effects. The effects of narrow OBPMs on healthcare utilization or costs, however, were unfavourable (3) or unknown (6). All broad OBPMs (3) showed positive effects on quality of care, while reducing healthcare cost growth. Discussion: Although strong empirical evidence on the effects of OBPMs on healthcare quality, utilization, and costs is limited, our findings suggest that broad OBPMs may be preferred over narrow OBPMs

    Urinary pesticide mixture patterns and exposure determinants in the adult population from the Netherlands and Switzerland : Application of a suspect screening approach

    Get PDF
    INTRODUCTION: Non-occupational sources of pesticide exposure may include domestic pesticide usage, diet, occupational exposure of household members, and agricultural activities in the residential area. We conducted a study with the ambition to characterize pesticide mixture patterns in a sample of the adult population of the Netherlands and Switzerland, using a suspect screening approach and to identify related exposure determinants. METHODS: A total of 105 and 295 adults participated in the Dutch and Swiss studies, respectively. First morning void urine samples were collected and analyzed in the same laboratory. Harmonized questionnaires about personal characteristics, pesticide-related activities, and diet were administered. Detection rates and co-occurrence patterns were calculated to explore internal pesticide exposure patterns. Censored linear and logistic regression models were constructed to investigate the association between exposure and domestic pesticide usage, consumption of homegrown and organic foods, household members' exposure, and distance to agricultural and forest areas. RESULTS: From the 37 detected biomarkers, 3 (acetamiprid (-CH2), chlorpropham (4-HSA), and flonicamid (-C2HN)) were detected in ≥40% of samples. The most frequent combination of biomarkers (acetamiprid-flonicamid) was detected in 22 (5.5%) samples. Regression models revealed an inverse association between high organic vegetable and fruit consumption and exposure to acetamiprid, chlorpropham, propamocarb (+O), and pyrimethanil (+O + SO3). Within-individual correlations in repeated samples (summer/winter) from the Netherlands were low (≤0.3), and no seasonal differences in average exposures were observed in Switzerland. CONCLUSION: High consumption of organic fruit and vegetables was associated with lower pesticide exposure. In the two countries, detection rates and co-occurrence were typically low, and within-person variability was high. Our study results provide an indication for target biomarkers to include in future studies aimed at quantifying urinary exposure levels in European adult populations

    A State-of-the-Science Review on High-Resolution Metabolomics Application in Air Pollution Health Research: Current Progress, Analytical Challenges, and Recommendations for Future Direction

    Get PDF
    BACKGROUND: Understanding the mechanistic basis of air pollution toxicity is dependent on accurately characterizing both exposure and biological responses. Untargeted metabolomics, an analysis of small-molecule metabolic phenotypes, may offer improved estimation of exposures and corresponding health responses to complex environmental mixtures such as air pollution. The field remains nascent, however, with questions concerning the coherence and generalizability of findings across studies, study designs and analytical platforms. OBJECTIVES: We aimed to review the state of air pollution research from studies using untargeted high-resolution metabolomics (HRM), highlight the areas of concordance and dissimilarity in methodological approaches and reported findings, and discuss a path forward for future use of this analytical platform in air pollution research. METHODS: We conducted a state-of-the-science review to a) summarize recent research of air pollution studies using untargeted metabolomics and b) identify gaps in the peer-reviewed literature and opportunities for addressing these gaps in future designs. We screened articles published within Pubmed and Web of Science between 1 January 2005 and 31 March 2022. Two reviewers independently screened 2,065 abstracts, with discrepancies resolved by a third reviewer. RESULTS: We identified 47 articles that applied untargeted metabolomics on serum, plasma, whole blood, urine, saliva, or other biospecimens to investigate the impact of air pollution exposures on the human metabolome. Eight hundred sixteen unique features confirmed with level-1 or-2 evidence were reported to be associated with at least one or more air pollutants. Hypoxanthine, histidine, serine, aspartate, and glutamate were among the 35 metabolites consistently exhibiting associations with multiple air pollutants in at least 5 independent studies. Oxidative stress and inflammation-related pathways—including glycerophospholipid metabolism, pyrimidine metabolism, methionine and cysteine metabolism, tyrosine metabolism, and tryptophan metabolism—were the most commonly perturbed pathways reported in >70% of studies. More than 80% of the reported features were not chemically annotated, limiting the interpretability and generalizability of the findings. CONCLUSIONS: Numerous investigations have demonstrated the feasibility of using untargeted metabolomics as a platform linking exposure to internal dose and biological response. Our review of the 47 existing untargeted HRM–air pollution studies points to an underlying coherence and consistency across a range of sample analytical quantitation methods, extraction algorithms, and statistical modeling approaches. Future directions should focus on validation of these findings via hypothesis-driven protocols and technical advances in metabolic annotation and quantification. https://doi.org/10.1289/EHP11851

    Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases

    Get PDF
    BACKGROUND: Epidemiologic evidence indicates common risk factors, including air pollution exposure, for respiratory and cardiovascular diseases, suggesting the involvement of common altered molecular pathways. OBJECTIVES: The goal was to find intermediate metabolites or metabolic pathways that could be associated with both air pollutants and health outcomes ("meeting-in-the-middle"), thus shedding light on mechanisms and reinforcing causality. METHODS: We applied a statistical approach named 'meet-in-the-middle' to untargeted metabolomics in two independent case-control studies nested in cohorts on adult-onset asthma (AOA) and cardio-cerebrovascular diseases (CCVD). We compared the results to identify both common and disease-specific altered metabolic pathways. RESULTS: A novel finding was a strong association of AOA with ultrafine particles (UFP; odds ratio 1.80 [1.26, 2.55] per increase by 5000 particles/cm3). Further, we have identified several metabolic pathways that potentially mediate the effect of air pollution on health outcomes. Among those, perturbation of Linoleate metabolism pathway was associated with air pollution exposure, AOA and CCVD. CONCLUSIONS: Our results suggest common pathway perturbations may occur as a consequence of chronic exposure to air pollution leading to increased risk for both AOA and CCVD

    Evolving DNA methylation and gene expression markers of B-cell chronic lymphocytic leukemia are present in pre-diagnostic blood samples more than 10 years prior to diagnosis

    Get PDF
    Background B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into the pathogenesis of the disease of potential clinical relevance. Results We employed peripheral blood buffy coats of 347 apparently healthy subjects, of whom 28 were diagnosed with CLL 2.0–15.7 years after enrollment, to derive for the first time genome-wide DNA methylation, as well as gene and miRNA expression, profiles associated with the risk of future disease. After adjustment for white blood cell composition, we identified 722 differentially methylated CpG sites and 15 differentially expressed genes (Bonferroni-corrected p < 0.05) as well as 2 miRNAs (FDR < 0.05) which were associated with the risk of future CLL. The majority of these signals have also been observed in clinical CLL, suggesting the presence in prediagnostic blood of CLL-like cells. Future CLL cases who, at enrollment, had a relatively low B-cell fraction (<10%), and were therefore less likely to have been suffering from undiagnosed CLL or a precursor condition, showed profiles involving smaller numbers of the same differential signals with intensities, after adjusting for B-cell content, generally smaller than those observed in the full set of cases. A similar picture was obtained when the differential profiles of cases with time-to-diagnosis above the overall median period of 7.4 years were compared with those with shorted time-to-disease. Differentially methylated genes of major functional significance include numerous genes that encode for transcription factors, especially members of the homeobox family, while differentially expressed genes include, among others, multiple genes related to WNT signaling as well as the miRNAs miR-150-5p and miR-155-5p. Conclusions Our findings demonstrate the presence in prediagnostic blood of future CLL patients, more than 10 years before diagnosis, of CLL-like cells which evolve as preclinical disease progresses, and point to early molecular alterations with a pathogenetic potential

    A physiologically-based kinetic (PBK) model for work-related diisocyanate exposure: Relevance for the design and reporting of biomonitoring studies

    Get PDF
    Diisocyanates are highly reactive substances and known causes of occupational asthma. Exposure occurs mainly in the occupational setting and can be assessed through biomonitoring which accounts for inhalation and dermal exposure and potential effects of protective equipment. However the interpretation of biomonitoring data can be challenging for chemicals with complex kinetic behavior and multiple exposure routes, as is the case for diisocyanates. To better understand the relation between external exposure and urinary concentrations of metabolites of diisocyanates, we developed a physiologically based kinetic (PBK) model for methylene bisphenyl isocyanate (MDI) and toluene di-isocyanate (TDI). The PBK model covers both inhalation and dermal exposure, and can be used to estimate biomarker levels after either single or chronic exposures. Key parameters such as absorption and elimination rates of diisocyanates were based on results from human controlled exposure studies. A global sensitivity analysis was performed on model predictions after assigning distributions reflecting a mixture of parameter uncertainty and population variability. Although model-based predictions of urinary concentrations of the degradation products of MDI and TDI for longer-term exposure scenarios compared relatively well to empirical results for a limited set of biomonitoring studies in the peer-reviewed literature, validation of model predictions was difficult because of the many uncertainties regarding the precise exposure scenarios that were used. Sensitivity analyses indicated that parameters with a relatively large impact on model estimates included the fraction of diisocyanates absorbed and the binding rate of diisocyanates to albumin relative to other macro molecules.We additionally investigated the effects of timing of exposure and intermittent urination, and found that both had a considerable impact on estimated urinary biomarker levels. This suggests that these factors should be taken into account when interpreting biomonitoring data and included in the standard reporting of isocyanate biomonitoring studies

    Variability of the Human Serum Metabolome over 3 Months in the EXPOsOMICS Personal Exposure Monitoring Study.

    Get PDF
    Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and untargeted metabolomics are increasingly used in exposome studies to study the interactions between nongenetic factors and the blood metabolome. To reliably and efficiently link detected compounds to exposures and health phenotypes in such studies, it is important to understand the variability in metabolome measures. We assessed the within- and between-subject variability of untargeted LC-HRMS measurements in 298 nonfasting human serum samples collected on two occasions from 157 subjects. Samples were collected ca. 107 (IQR: 34) days apart as part of the multicenter EXPOsOMICS Personal Exposure Monitoring study. In total, 4294 metabolic features were detected, and 184 unique compounds could be identified with high confidence. The median intraclass correlation coefficient (ICC) across all metabolic features was 0.51 (IQR: 0.29) and 0.64 (IQR: 0.25) for the 184 uniquely identified compounds. For this group, the median ICC marginally changed (0.63) when we included common confounders (age, sex, and body mass index) in the regression model. When grouping compounds by compound class, the ICC was largest among glycerophospholipids (median ICC 0.70) and steroids (0.67), and lowest for amino acids (0.61) and the O-acylcarnitine class (0.44). ICCs varied substantially within chemical classes. Our results suggest that the metabolome as measured with untargeted LC-HRMS is fairly stable (ICC > 0.5) over 100 days for more than half of the features monitored in our study, to reflect average levels across this time period. Variance across the metabolome will result in differential measurement error across the metabolome, which needs to be considered in the interpretation of metabolome results
    corecore