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A B S T R A C T   

Background: Exposure to ambient air pollution, even at low levels, is a major environmental health risk. The 
peripheral blood transcriptome provides a potential avenue for the elucidation of ambient air pollution related 
biological perturbations. We assessed the association between long-term estimates for seven priority air pol-
lutants and perturbations in peripheral blood transcriptomics data collected in the Dutch National Twin Register 
(NTR) and Netherlands Study of Depression and Anxiety (NESDA) cohorts. 
Methods: In both the discovery (n = 2438) and replication (n = 1567) cohort, outdoor concentration of 7 air 
pollutants (NO2, NOx, particulate matter (PM2.5, PM2.5abs, PM10, PMcoarse), and ultrafine particles) was predicted 
with land use regression models. Gene expression was assessed by Affymetrix U219 arrays. Multi-variable uni-
variate mixed-effect models were applied to test for an association between the air pollutants and the tran-
scriptome. Functional analysis was conducted in DAVID. 
Results: In the discovery cohort, we observed for 335 genes (374 probes with FDR < 5 %) a perturbation in 
peripheral blood gene expression that was associated with long-term average levels of PM2.5. For 69 genes pooled 
effect estimates from the NTR and NESDA cohorts were significant. Identified genes play a role in biological 
pathways related to cell signaling and immune response. Sixty-two out of 69 genes had a similar direction of 
effect in an analysis in which we regressed the probes on differential PM2.5 exposure within monozygotic twin 
pairs, indicating that the observed differences in gene expression were likely driven by differences in air 
pollution, rather than by confounding by genetic factors. 
Conclusion: Our results indicate that PM2.5 can elicit a response in cell signaling and the immune system, both 
hallmarks of environmental diseases. The differential effect that we observed between air pollutants may aid in 
the understanding of differential health effects that have been observed with these exposures.   

1. Introduction 

Over the years epidemiological studies have convincingly shown that 
exposure to ambient air pollution is a major environmental health risk, 
even at levels below European exposure limits (Liu et al., 2021; Mos-
tafavi et al., 2017; Strak et al., 2021). Recent estimates indicate that 
long-term exposure to ambient air pollution (as measured by PM2.5) 

contributed to more than 4 million deaths worldwide in 2016, primarily 
due to cardiovascular and respiratory diseases, and lung cancer (Health 
Effects Institute, 2018). 

Although the exact mechanisms behind the observed associations 
have not clearly been delineated, long-term pulmonary oxidative stress 
and inflammation induced by chronic exposure to inhaled pollutants has 
been hypothesized to result in a systemic inflammatory state capable of 
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activating hemostatic pathways, impairing vascular function, and 
accelerating atherosclerosis (Brook et al., 2010; Peters et al., 2021). 

Further understanding of the biological mechanisms of air pollution- 
related health effects allows for a better underpinning of the existing 
empirical evidence, and aids in the identification of previously undis-
covered air pollutant related health effects. For example, O’Beirne et al. 
recently demonstrated that PM2.5 exposure contributes to significant 
dysregulation of the small airway epithelium transcriptome of smokers 
thereby providing insights into the role of air pollution in the develop-
ment of respiratory disease among susceptible individuals (O’Beirne 
et al., 2018). Croft et al. evaluated transcriptome patterns in peripheral 
blood and showed an air pollutant, timing, and infections specific effect 
of air pollution on the pathogenesis of respiratory infection (Croft et al., 
2021). 

The peripheral blood transcriptome provides a potential avenue for 
the elucidation of ambient air pollution related biological perturbations 
in epidemiological studies as it reflects physiological and pathological 
events occurring in different tissues of the body (Mohr and Liew, 2007). 
There is proof-of-principle that the peripheral blood transcriptome can 
serve to identify early, disease-related perturbations caused by envi-
ronmental exposures; for example, from studies of cigarette smoking (an 
exposure in many ways similar to particulate air pollutants). Smoking- 
modified genome-wide gene expression profiles have been shown to 
reliably predict diseases and conditions independently known to be 
causally associated with cigarette smoking (Huan et al., 2016; Vink 
et al., 2017). 

To date, a limited number of epidemiological studies has explored 
the impact of ambient air pollution on the peripheral blood tran-
scriptome, most of which have focused on acute (transient) perturba-
tions in response to variations in pollutant levels (Huang et al., 2010; 
Peretz et al., 2007; Pettit et al., 2012; Wittkopp et al., 2016). Four 
studies have focused on the impact of ambient air pollution on (non- 
transient) dysregulation of the peripheral blood transcriptome (Merid 
et al., 2021; Mostafavi et al., 2017; Vrijens et al., 2017; Winckelmans 
et al., 2017). Vrijens et al. (n = 98 discovery cohort; n = 175 validation 
cohort) reported associations between 2-year average concentrations of 
PM2.5 and a range of dysregulated pathways including cell-cell 
communication (among men) and respiratory electron transport 
(among women). In the same cohort (n = 98), Winckelmans et al. re-
ported associations between one-month average PM10 exposure and 
electron transport chain and the Tri Carbonic Acid cycle. Mostafavi et al. 
(n = 550) described subtle changes in gene expression related to 2-year 
average exposure to NOx, though no pathways were significantly 
enriched. Merid et al. (n = 656) reported two differentially expressed 
transcript clusters associated with exposure to PM2.5 at birth, one of 
them mapping to the MIR1296 gene. A main limitation of these studies is 
their comparatively small study size, limiting their statistical power to 
detect (likely subtle) ambient air pollution induced dysregulation of the 
peripheral blood transcriptome. 

Here we present the largest study to date looking at the effects of air 
pollution on gene expression. Our study includes roughly four times as 
many individuals as have been included in the combined evidence base 
available so far. 

We combine gene expression data from two large Dutch cohorts 
(Netherlands Twin Register (NTR), n = 2438) (Willemsen et al., 2013), 
discovery cohort and the Netherlands Study of Depression and Anxiety 
(NESDA), n = 1567, replication cohort) (Penninx et al., 2008), with state 
of the art assessment of seven priority ambient air pollution pollutants 
(PM2.5, NO2, NOx, PM2.5abs, PM10, PMcoarse, and UFP), and two non- 
air pollution indicators of the urban environment: the percentage 
greenspace, and the neighborhood socio-economic status. 

In addition, the presence of a high number of monozygotic (MZ) twin 
pairs in the NTR cohort provided us with the possibility to perform a 
within-family analysis. MZ twins are perfectly matched for genotype and 
early (including prenatal) shared environmental exposures, such as 
maternal smoking during pregnancy and air pollution. As previously 

shown for smoking behavior, analyses within MZ pairs can help to 
differentiate whether the associations we observed between long-term 
exposure to ambient air pollution and dysregulated gene expression 
are the result of a reaction of gene expression to exposure to ambient air 
pollution, or are confounded by genetic factors (Vink et al., 2017). As 
differential gene expression between a highly exposed MZ twin and the 
genetically identical lower exposed co-twin cannot be caused by dif-
ferences in genetic liability, observed differential expression is therefore 
likely to be reactive to air pollution exposure. 

2. Methods 

2.1. Study populations 

This study incorporated data from two studies: the Netherlands Twin 
Register (NTR) (Willemsen et al., 2010) and the Netherlands Study of 
Depression and Anxiety (NESDA) (Penninx et al., 2008). Both studies 
were approved by the Central Ethics Committee on Research Involving 
Human Subjects of the VU University Medical Center, Amsterdam, and 
all subjects provided written informed consent. Blood samples were 
collected between January 2004 and July 2008. Data from participants 
without blood samples or geo-location information at the time of blood 
sampling were excluded. NTR contributed data from 2438 individuals 
(66 % women), including 1104 MZ twins (421 complete twin pairs) and 
974 dizygotic twins (207 complete twin pairs). NESDA contributed data 
of 1567 individuals (66 % women). NTR was defined as the discovery 
cohort and NESDA as the replication cohort. 

2.2. Exposure assessment 

Using residential address information at the time of blood sampling, 
annual outdoor concentrations of seven air pollutants were generated 
for all study participants based on land use regression models published 
in the peer reviewed literature and used in previous health studies: 
PM2.5 (Particulate matter with a diameter < 2.5 µm), NO2 (Nitrogen 
dioxide), NOx (Nitrogen oxides) (Beelen et al., 2013); PM2.5abs (Absor-
bance of PM2.5), PM10 (Particulate matter with a diameter < 10 µm), 
Pmcoarse (Particulate matter with a diameter 2.5–10 µm) (Eeftens et al., 
2012); and UFP (ultrafine particulates) (Van Nunen et al., 2017). Due to 
their skewed distribution, we log-transformed all air pollutants before 
inclusion into the statistical analyses. In addition, we generated esti-
mates for two indicators of surrounding green space: Normalized dif-
ference vegetation index (NDVI) (Weier and Herring, 2000) and 
TOP10NL (a national land-use database of the Netherlands) (Kadaster), 
and included ‘Percentage of households with a low purchasing power’ 
(PLPP) as indicator of neighborhood socioeconomic status. 

2.3. Blood sampling and gene expression assessment 

Blood sampling and RNA extraction procedures have been described 
in detail previously. (Jansen, 2014; Ouwens, 2020; Willemsen, 2010; 
Wright, 2014) Briefly, venous blood samples were collected 7–10 AM 
(NTR) and 8–10 AM (NESDA) after an overnight fast. In NTR, blood 
collection in fertile women took place, when possible, at a fixed time of 
their menstrual cycle. Within 60 min after blood draw, blood collected 
in lithium heparin coagulant tubes was transferred into PAXgene Blood 
RNA tubes (Qiagen, Valencia, Florida, USA) and stored at −20 ◦C. Total 
RNA was extracted according to the manufacturer’s protocol (Qiagen) 
(Spijker et al., 2004; Willemsen et al., 2010). 

Gene expression was assessed at the Rutgers University Cell and DNA 
Repository. Samples were randomly assigned to plates. Samples were 
hybridized to Affymetrix U219 array plates (GeneTitan, Affymetrix, 
Santa Clara, California, USA). Array hybridization, washing, staining 
and scanning were carried out in an Affymetrix GeneTitan System per 
the manufacturer’s protocol. 

Probes were removed if they did not pass standard Affymetrix quality 
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control metrics (Affymetrix expression console) and when their location 
was uncertain or if their location intersected a polymorphic single 
nucleotide polymorphism (SNP), leaving 44 241 probe sets for analysis 
(Peters et al., 2021). Expression values were obtained using robust 
multi-array average normalization implemented in Affymetrix Power 
Tools (v 1.12.0). Data for samples that displayed an average Pearson 
correlation below 0.8 with the probe set expression values of other 
samples and samples with incorrect sex chromosome expression were 
removed. 

2.4. Statistical methods 

We applied linear mixed-models (LMM) to test for associations be-
tween each of the seven air pollutants and the 44 241 probes in NTR. 
Models were adjusted for: plate, well, family ID, month of blood sam-
pling, sex, age, smoking status, BMI, total white blood cell counts, days 
between sampling and extraction, days between extraction and ampli-
fication, and sampling time. Observed associations with a Benjamini and 
Hochberg adjusted p-values (BH) < 0.05 were considered statistically 
significant. We conducted sensitivity analyses for the probes that were 
significantly associated with air pollution in the screening analysis: we 
windsorized the exposure distribution at the 5th and 95th percentiles of 
the original exposure distribution to assess the impact of outliers in the 
exposure distribution on the results. We conducted analyses among non- 
smokers and smokers separately to assess the impact of smoking 
behavior. Finally, we fit a multiple regression model that included all 
seven pollutants, two indicators for surrounding greenness, and neigh-
borhood socio-economic status. 

Analyses within MZ twin pairs were conducted by regressing resi-
dualized differential probe levels, using the confounder model from the 
linear mixed models as applied in the screening analyses, on differential 
air pollution exposure levels. Differential air pollution exposure levels 
were calculated by subtracting estimated exposures within twin pairs. 

Replication analyses in NESDA were conducted by applying LMM. 
Models were adjusted for plate, well, month of blood sampling, lab 
(included as random effects), as well as sex, age, smoking status, BMI, 
time of blood sampling, red blood cell count, and hematocrit (included 
as fixed effects). We conducted a meta-analysis to combine results from 
NTR and NESDA for associations that were significantly associated in 
NTR and had a similar direction of effect in NESDA. We call probes that 
were significant in the meta-analysis ‘robust’. No adjustment for mul-
tiple testing was applied in the replication analyses. 

Statistical analyses were performed in R version 3.6.1 using the lme4 
package v1.1.21 (Douglas et al., 2014) and meta package 5.1.1. 

Robust genes were submitted to DAVID v6.8 (Huang et al., 2009) for 
gene functional classification, functional annotation, and functional 
annotation clustering. An enrichment score of 1.2 and a BH < 0.05 were 
defined as threshold for enrichment. As reference set for enrichment 
analysis we included all 18,238 genes targeted by the Affymetrix U219 
arrays. Results from LMM analyses for all probes in both NTR and 
NESDA were also input for Gene Set Enrichment Analysis (GSEA). GSEA 
was assessed for all Gene-Ontology terms using the FGSEA package in R 
v 1.12 (Korotkevich et al.). Five hundred permutations were run to es-
timate the p-value and a q-value < 0.05 was used a threshold for sig-
nificant enrichment. We retained the terms with significant enrichment 
in both NTR and NESDA. 

3. Results 

General descriptive statistics for NTR and NESDA participants are 
provided in Table 1. The two cohorts are highly comparable in terms of 
gender balance, smoking and BMI status, and age. Exposure distribu-
tions for the seven air pollutants are very similar for NTR and NESDA 
(Fig. 1). As observed in other studies, the air pollutants are moderately 
to highly correlated (Fig. S1). PM2.5 stands out with more moderate 
correlation with the other pollutants, ranging from 0.39 (with PMcoarse) 

to 0.79 (with PM2.5absorbance). Between-pollutant correlations in 
NESDA are slightly higher than in NTR. 

3.1. Screening analysis 

In the univariate screening analysis within NTR we observed a signal 
for PM2.5 (374 probes (335 genes) associated at BH < 0.05), and no 
strong associations for any of the other air pollutants (Table 2). Sensi-
tivity analyses are presented in Table S1. The 374 probes associated with 
PM2.5 were robust in a minimal model (only corrected for well, plate, 
family ID, and month of sampling) and when the exposure distribution 
was winsorized at the 5th and 95th percentiles of the exposure distri-
bution. In a model in which we additionally corrected for the other 
pollutants (NO2, NOX, PM2.5abs, PM10, PMcoarse, and UFP), and the two 
urban exposome factors (proportion greenspace and neighborhood 
socio-economic status), the number of probes associated with PM2.5 at 
BH < 0.05 dropped to 253. Among non-smokers only (1337 individuals), 
357 probes remained nominally associated with PM2.5, while among 
smokers (515 individuals) only 137 probes remained nominally associ-
ated. The direction of effect of all 374 observed associations (286 
upregulated, and 88 downregulated) was constant across all sensitivity 
analyses. 

3.2. Replication analysis 

Out of the 374 probes significantly associated with PM2.5 in NTR, 
198 (52.9 %) had a similar direction of effect in the replication analysis 
in NESDA. 71 of these probes (69 genes) were significantly associated in 
the meta-analysis, including 5 probes that were independently signifi-
cantly associated with PM2.5 in NESDA as well (p < 0.05). In Table 3 we 
report the top 25 probes with coefficient concordance between NTR and 
NESDA and for which the confidence interval from the meta-analysis 
excluded zero (all 71 probes are reported in Table S2). 

3.3. Within MZ twin pair analysis 

There was moderate concordance in PM2.5 exposure levels within MZ 
twin pairs (Pearson correlation coefficient 0.56, Fig. 2). Among the 71 
probes (69 genes) that were robustly associated with PM2.5 in both NTR 
and NESDA in the meta-analysis, 62 had a similar direction of effect in 
the within MZ twin pair analysis in the NTR study (421 pairs). Five of 
those were nominally significant (p < 0.05) associated with PM2.5 
(Table S3). 

3.4. Pathway analysis 

Gene functional classification in DAVID based on the 69 robustly 

Table 1 
Main characteristics of participants from the NTRa and NESDAb cohorts that are 
part of this study.  

Variable NTRa NESDAb 

N 2438 1567 
Sex 

Men 825 528 
Women 1613 1039 

Smoking status (%) 
Never smoked 1337 (54.8) 956 
Current smoker 515 (21.1) 611 
Former smoker 586 (24.0)  

BMI (%) 
BMI 20–30 1987 (81.5) 1161 
BMI < 20 250 (10.3) 129 
BMI > 30 201 (8.2) 277 

Age (mean (SD)) 36.9 (13.04) 42.3 (12.7)  

a Netherlands Twin Register. 
b Netherlands Study of Depression and Anxiety. 
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associated genes resulted in one group of highly related genes, identified 
with an enrichment score of 1.19 (marginally below our predefined 
threshold for enrichment). The group includes RNA binding motif pro-
tein 23 (RBM23), RNA binding motif protein 12B (RBM12B), serine and 
arginine rich splicing factor 11(SRSF11), and heterogeneous nuclear 
ribonucleoprotein L like (HNRNPLL). These genes are involved in RNA 
binding. We identified one annotation cluster (Enrichment score 1.55, 

Table S4) consisting of pathways related to cell signaling and identified 
one significantly enriched term: “phosphoprotein” (overlap of 43 genes, 
BH p-value = 0.022), related to post translational modification 
(Table S5). 

In Fig. 3 we present results from GSEA based on the complete results 
from screening analysis in NTR and NESDA. We identified three GO- 
terms that were consistently enriched (q < 0.05) in both cohorts: 

Fig. 1. Exposure distributions for the seven air pollutants included in the current analysis within the NTR and NESDA cohorts.  

Table 2 
Number of associations observed between air pollutants and gene expression in the NTR cohort; results from univariate screening.a   

PM2.5
b NO2b NOx b PM2.5abs 

b PM10 
b PMcoarse 

b UFP b 

P < 0.05 5940 2810 2082 3011 2107 2385 2001 
BH20c 2560 0 0 1 0 0 1 
BH5d 374 0 0 0 0 0 0 
BH1e 8 0 0 0 0 0 0  

a Univariate NTR models adjusted for: plate, well, family ID, month of sampling, sex, age, smoking status, BMI, white blood cell counts, days between sampling and 
extraction, days between extraction and amplification, sampling time. 

b PM2.5 (Particulate matter with a diameter < 2.5 µm), NO2 (Nitrogen dioxide), NOx (Nitrogen oxides); PM2.5abs (Absorbance of PM2.5), PM10 (Particulate matter 
with a diameter < 10 µm), Pmcoarse (Particulate matter with a diameter 2.5–10 µm), and UFP (ultrafine particulates). 

c Benjamini and Hochberg adjusted p-values (BH) < 0.20. 
d Benjamini and Hochberg adjusted p-values (BH) < 0.05. 
e Benjamini and Hochberg adjusted p-values (BH) < 0.01. 
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Table 3 
Top 25 probes with coefficient concordance between NTR and NESDA and CI meta analysis excluding 0, ordered by p-value NTR.a  

probe Gene Chrom β NTRa SENTRa p-value NTRa В NTRb SE NTRb p-value NTRb В NESDAc SE NESDAc p-val NESDAc I2d β metae Lower Metae Upper Metae 

11741727_a_at NEDD1 chr12  0.879  0.179 1.24E−06  0.060  0.030 8.47E−04  0.317  0.259 2.32E−01  68.8 %  0.629  0.081  1.177 
11719226_at MOB1B chr4  1.616  0.355 7.02E−06  0.077  0.029 3.06E−02  0.515  0.510 3.15E−01  68.1 %  1.127  0.055  2.198 
11742903_at CETN3 chr5  0.790  0.180 1.26E−05  0.014  0.021 4.23E−01  0.242  0.245 3.29E−01  69.3 %  0.542  0.007  1.076 
11725311_s_at TMED7 chr5  1.127  0.258 1.42E−05  0.064  0.045 1.37E−02  0.560  0.322 8.64E−02  46.8 %  0.876  0.325  1.428 
11715925_a_at TRAM1 chr8  1.169  0.269 1.49E−05  0.114  0.034 2.25E−05  0.553  0.400 1.74E−01  38.9 %  0.932  0.345  1.520 
11744405_a_at C2orf76 chr2  0.767  0.178 1.75E−05  0.033  0.020 6.70E−02  0.484  0.258 6.24E−02  0.0 %  0.676  0.389  0.963 
11730899_s_at WAPAL chr10  1.267  0.295 1.94E−05  0.075  0.021 1.08E−02  0.419  0.393 2.90E−01  66.3 %  0.883  0.056  1.710 
11741816_s_at TAB3 chrX  1.176  0.275 2.35E−05  0.083  0.022 2.37E−03  0.506  0.402 2.15E−01  47.1 %  0.905  0.261  1.549 
11722432_at C1orf27 chr1  1.691  0.400 2.71E−05  0.106  0.032 8.16E−03  0.515  0.599 3.93E−01  62.5 %  1.188  0.047  2.328 
11743651_a_at DEK chr6  0.888  0.210 2.83E−05  0.022  0.023 2.90E−01  0.391  0.280 1.68E−01  50.4 %  0.674  0.192  1.156 
11731270_a_at MGAM chr7  −0.880  0.207 2.91E−05  −0.086  0.016 3.48E−05  −0.911  0.380 1.85E−02  0.0 %  −0.887  −1.244  −0.530 
11758686_s_at CD164 chr6  1.090  0.262 3.36E−05  0.079  0.016 2.45E−03  0.486  0.320 1.32E−01  53.1 %  0.816  0.227  1.405 
11735999_a_at ZNF791 chr19  0.907  0.220 4.05E−05  0.038  0.023 8.24E−02  0.610  0.318 5.83E−02  0.0 %  0.811  0.457  1.165 
11720430_a_at ORMDL1 chr2  0.864  0.211 4.49E−05  0.035  0.037 9.24E−02  0.339  0.280 2.30E−01  55.6 %  0.634  0.123  1.145 
11739130_a_at ABAT chr16  −0.941  0.230 4.51E−05  −0.053  0.037 2.14E−02  −0.436  0.362 2.34E−01  27.9 %  −0.766  −1.237  −0.295 
11754191_x_at SRSF11 chr1  1.259  0.307 4.64E−05  0.073  0.012 1.70E−02  0.422  0.404 2.99E−01  63.1 %  0.882  0.066  1.697 
11751862_a_at KDM1B chr6  −0.659  0.163 5.75E−05  −0.023  0.010 1.65E−01  −0.381  0.235 1.27E−01  0.0 %  −0.568  −0.831  −0.305 
11758658_s_at EPM2AIP1 chr3  1.496  0.368 5.84E−05  0.057  0.035 1.23E−01  0.579  0.422 1.85E−01  62.7 %  1.060  0.163  1.958 
11736830_s_at MAP3K7 chr6  1.548  0.385 6.43E−05  0.073  0.031 5.61E−02  0.848  0.478 7.96E−02  23.2 %  1.255  0.579  1.932 
11719758_a_at RP1-178F10.3 chr17  −0.491  0.123 6.88E−05  −0.041  0.048 9.58E−04  −0.257  0.180 1.75E−01  13.2 %  −0.410  −0.628  −0.193 
11756273_a_at RBM12B chr8  0.725  0.183 7.58E−05  0.039  0.023 3.31E−02  0.318  0.210 1.31E−01  53.2 %  0.535  0.137  0.932 
11755245_x_at C3orf17 chr3  0.854  0.215 7.84E−05  0.059  0.016 6.30E−03  0.264  0.292 3.71E−01  62.2 %  0.592  0.017  1.166 
11760412_a_at EIF3K chr19  −0.702  0.177 7.93E−05  −0.033  0.030 6.56E−02  −0.229  0.218 2.97E−01  64.8 %  −0.483  −0.945  −0.020 
11727087_a_at PTS chr11  0.906  0.228 8.11E−05  −0.002  0.034 9.40E−01  0.285  0.343 4.06E−01  56.1 %  0.648  0.048  1.248 
11744850_a_at SSH2 chr17  −0.652  0.166 8.67E−05  −0.036  0.027 2.77E−02  −0.286  0.266 2.86E−01  26.3 %  −0.528  −0.867  −0.190  

a Univariate NTR models adjusted for: plate, well, family ID, month of sampling, sex, age, smoking status, BMI, white blood cell counts, days between sampling and extraction, days between extraction and amplification, 
sampling time. 

b Models additionally corrected for NO2, NOX, PM2.5abs, PM10, PMcoarse, UFP, and top10NL, NDVI, PLPP. 
c Univariate NESDA models adjusted for: sex, age, smoking status, BMI, rbc, hgb, hct, sampling time, plate, well, month lab. 
d Results from meta-analysis Univariate results NTR and NESDA. 
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‘response to type I interferon’ (biological process related to immune 
response), platelet activation (biological process related to intercellular 
communication and mediation of inflammatory activities), vesicle lumen 
(cellular component). 

4. Discussion 

We conducted a study in two large Dutch cohorts for which assess-
ment of both air pollutants and the genome-wide transcriptome was 
harmonized. We observed a perturbation in peripheral blood gene 
expression associated with long-term average levels PM2.5 and no as-
sociations with any of the other included air pollutants. Genes that were 
associated with PM2.5 in both cohorts play a role in biological pathways 
related to cell signaling and immune response. All sixty-nine genes 
identified in this study have not previously been identified in one of the 
four existing studies of long-term exposure to air pollution and pertur-
bations in the genome-wide transcriptome and are therefore novel 

findings. 
Among the robustly associated genes, a group of genes involved in 

RNA binding was enriched. Interactions between air pollution and RNA 
binding have been reported before, for example in Baldridge et al. 
(2015) who demonstrated that cellular RNA is chemically modified by 
exposure to air pollution mixtures (Baldridge et al., 2015). Juan C. 
Gonzalez-Rivera et al. 2020 show that air pollution induces oxidative 
modifications such as 8-oxo-7,8-dihydroguanine in RNAs of lung cells, 
which could be associated with premature lung dysfunction (Gonzalez- 
Rivera et al., 2020). Kupsco et al. presented results in which total blood 
RNA m6A was positively associated with 8-hour black carbon exposure 
(Kupsco et al., 2020). 

Uniprot keyword ‘phosphoprotein’ was enriched in our study as well. 
Phosphoproteins play a role in the respiratory chain. Our results are 
complementary to findings from Vrijens (Vrijens et al., 2017), Winck-
elmans (Winckelmans et al., 2017), and Rossner (Rossner et al., 2015), 
who identified several respiratory chain related pathways in relation to 
long-term exposure to particulate air pollution. 

We observed a downregulation of the response to type 1 interferon in 
our study. Interferons play a key role in innate immunity (Bauer et al., 
2012). As such our findings would point toward a potential role of PM2.5 
in dysregulation of the immune system and systemic inflammation. 
Similar findings were reported by Bauer et al., who demonstrated that 
the presence of inhaled PM in alveolar macrophages significantly de-
creases interleukin 1β and TNF-α production in bronchoalveolar cells in 
response to M tuberculosis infection as well as interferon-γ-production in 
peripheral blood mononuclear cells in response to purified protein de-
rivative (Bauer et al., 2012), in a study by Lilian Calderón-Garcidueñas 
et al. where exposure to air pollution resulted in increased CD8+ T cells 
and mCD14+ monocytes and reduced numbers of natural killer cells, 
interferon gamma and granulocyte-macrophage colony-stimulating 
factor (GM-CSF) (Calderón-Garcidueñas et al., 2009), and in a study 
by Tao et al. who reported that exposure to PM2.5 compromises antiviral 
immunity in influenza infection by inhibiting activation of NLRP3 
inflammasome and expression of interferon-β (Tao et al., 2020). 

We observed evidence for an impact of PM2.5 on the downregulation 
of platelet activation. Platelet activation likely plays a role in air 
pollution induced cardiovascular disease (Bourdrel et al., 2017). In 

Fig. 2. Concordance in PM2.5 exposure levels in monozygotic twin pairs (n =
421 pairs, Pearson correlation coefficient = 0.56). 

Fig. 3. Gene Ontology terms enriched (q < 0.05) in results observed in both the NTR and NESDA cohorts.  
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contrast to our findings, in the literature there is consistent signal for an 
increase in platelet activation and its role in enhanced thrombosis in 
response to exposure to air pollution (Robertson and Miller, 2018). 

We observed a signal specific to PM2.5 and only very weak in-
dications for an association with any of the other pollutants that were 
included in the analysis. PM2.5 has been identified as primary culprit in 
other epidemiological air pollution studies as well (Landrigan et al., 
2017). The absence of a signal for air pollutants that are typically 
considered to be largely driven by traffic (ie. NO2, BC, UFP) in our study 
would indicate the perturbations observed in our study are not primarily 
driven by traffic related air pollution, but might derive from other 
sources such as livestock, and industries (Strak et al., 2011). To further 
understand the impact of air pollution on perturbations in gene 
expression, a broader exposome approach is warranted where not only 
include physical-chemical exposures (such as air pollution) are included, 
but that also includes more extensive information on socio-economic 
(partly covered in this analysis through ‘neighbourhood purchasing 
power’), dietary, ‘built environment’ factors as well (Vlaanderen et al., 
2021). In the current analysis neighborhood purchasing power was very 
weakly correlated with PM2.5 (Pearson correlation coefficient: 0.08) and 
did therefore not confound our results, yet more extensive character-
ization of socio economic status in follow-up analyses might provide 
additional insights. 

4.1. Strengths and weaknesses 

Our study has several strengths. This is the largest study to date to 
assess the association between air pollution and transcriptomic pertur-
bations. We used state of the art exposure models for air pollutants and 
several key exposures that define the urban exposome. We were able to 
assess the replication of findings from our detection cohort (NTR) in a 
large replication cohort (NESDA). Assessment of exposures and tran-
scriptomics was the same for both cohorts, while covariates included in 
the analyses were either the same or harmonized between the cohorts. 
The twin design of the NTR study has allowed us to assess the potential 
impact of confounding by genetic factors on our results. Our finding that 
PM2.5 levels were moderately concordant within MZ twin pairs, in-
dicates that both members of the twin pair resided at relatively similar 
locations with respect to their PM2.5 exposure. This may have reduced 
the statistical power to detect whether the observed gene expression 
patterns were confounded by genetic factors. 

Even though our study is the largest of its kind to date, rather modest 
signals were observed in both detection and replication cohort as well as 
in the MZ twin pair analysis. Several factors could have contributed to 
this observation. It is possible that the effect of air pollution on the pe-
ripheral blood transcriptome is of such subtle and transient nature that 
even larger studies or exposure contrasts are needed to further increase 
statistical evidence. A pan-European comparison in PM2.5 concentration 
distributions indeed indicated that the exposure contrast within the 
Netherlands is rather modest compared to the contrast in exposure levels 
that can be observed across Europe (Eeftens et al., 2012). With regards 
to the likely transient nature of transcriptomic perturbations due to air 
pollution, the timing of blood sampling in relation to the timing of ep-
isodes of (high) exposure likely has an impact on the ability to detect 
associations. Further insight into kinetics and stability environmentally 
induced transcriptomic perturbations are needed, which require study 
designs that incorporate repeated blood sampling as well as detailed 
characterization of patterns in environmental exposure. Methods that 
allow for more personalized exposure estimates, such as those that 
incorporate insights from personal monitoring or time-activity data will 
contribute to improved characterization of environmental exposures, 
including air pollution (Vlaanderen et al., 2021). In this study we 
applied predictions from a land-use regression model to a time period 
(2004–2008) before the period of air quality monitoring used for model 
development (2008–2011). Studies have documented that land use 
regression models (as applied in our study) can be utilized successfully 

to estimate air pollution concentrations several years forwards or 
backwards in time (Wang et al., 2013). We therefore assume minimal 
impact of this extrapolation on the degree of air pollutant measurement 
error in our study. 

While multicollinearity of the seven air pollutants included in this 
study is a potential issue, PM2.5, the only pollutant for which we 
observed an effect in the univariate analysis, was only moderately 
correlated with the other pollutants. As such, the impact of multi-
collinearity on the effects estimates for PM2.5 from the multiple 
regression models which included all seven air pollutants was limited. 
Other avenues to improve the power to detect associations between the 
air pollution and transcriptomic perturbations would include scaling up 
to cross-continental analyses. In comparison to our study, such analyses 
would yield larger contrasts in environmental exposures including PM2.5 
(Eeftens et al., 2012). Yet, comparisons between countries are often 
complicated by the large differences in culture, diet, environment, etc., 
and would require harmonization of the available data. Methodological 
improvements in terms of statistical methods (e.g. moving toward ma-
chine learning approaches better capable of handling OMICs data, 
especially by integrating signals from multiple OMICs layers (Merid, 
2021; Mostafavi, 2018), and better integration of existing insights from 
toxicology and mechanistic studies in the epidemiological analysis 
(Scholten et al., 2021) will likely yield further insights into the impact of 
the environment on gene expression perturbations. 

To conclude, our results indicate that PM2.5 can elicit a response in 
cell signaling and the immune system, both hallmarks of environmental 
insults (Peters et al., 2021). Next steps in this line of research include 
replication of our results in large cohorts with state-of the art assessment 
of air pollution and other aspects in the exposome and additional 
mechanistic research to assess the implications of our findings. 

CRediT authorship contribution statement 

Jelle Vlaanderen: Conceptualization, Methodology, Formal anal-
ysis, Data curation, Writing – original draft. Roel Vermeulen: 
Conceptualization, Methodology, Writing – review & editing. Matthew 
Whitaker: Methodology, Formal analysis, Writing – review & editing. 
Marc Chadeau-Hyam: Methodology, Writing – review & editing. Jouke 
Jan Hottenga: Writing – review & editing, Resources. Eco de Geus: 
Writing – review & editing, Resources. Gonneke Willemsen: Writing – 
review & editing, Resources. Brenda W.J.H. Penninx: Writing – review 
& editing, Resources. Rick Jansen: Writing – review & editing, Re-
sources. Dorret I. Boomsma: Conceptualization, Writing – review & 
editing, Resources. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

Acknowledgements 

Funding: This work was supported by the European Union’s Horizon 
2020 research and innovation programme under grant agreement No 
874627 (EXPANSE) and by the US National Institute of Mental Health 
(RC2 MH089951, PI Sullivan) as part of the American Recovery and 
Reinvestment Act of 2009. The Netherlands Study of Depression and 
Anxiety (NESDA) and the Netherlands Twin Register (NTR) acknowl-
edge funding by the Netherlands Organization for Scientific Research 
(MagW/ZonMW grants 904-61-090, 985-10-002,904-61-193,480-04- 
004, 400-05-717, 912-100-20; Spinozapremie 56-464-14192; 

J. Vlaanderen et al.                                                                                                                                                                                                                             



Environment International 168 (2022) 107491

8

Geestkracht program grant 10-000-1002); Biobanking and Biomolecular 
Resources Research Infrastructure (BBMRI-NL); the European Science 
Foundation (EU/QLRT-2001-01254); the European Community’s Sev-
enth Framework Program (FP7/2007-2013); ENGAGE (HEALTH-F4- 
2007-201413); and the European Research Council (ERC, 230374). 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2022.107491. 

References 

Wright, F., et al., 2014. Heritability and genomics of gene expression in peripheral blood. 
Nat Genet 46 (5), 430–437. 

Baldridge, K.C., Zavala, J., Surratt, J., Sexton, K.G., Contreras, L.M., 2015 Jan. Cellular 
RNA is chemically modified by exposure to air pollution mixtures. Inhal Toxicol. 27 
(1), 74–82. https://doi.org/10.3109/08958378.2014.987361. PMID: 25600141.  

Beelen, R., et al., 2013. Development of NO2 and NOx land use regression models for 
estimating air pollution exposure in 36 study areas in Europe – The ESCAPE project. 
Atmos. Environ. 72, 10–23. 
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