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A B S T R A C T   

Introduction: Non-occupational sources of pesticide exposure may include domestic pesticide usage, diet, occu
pational exposure of household members, and agricultural activities in the residential area. We conducted a 
study with the ambition to characterize pesticide mixture patterns in a sample of the adult population of the 
Netherlands and Switzerland, using a suspect screening approach and to identify related exposure determinants. 
Methods: A total of 105 and 295 adults participated in the Dutch and Swiss studies, respectively. First morning 
void urine samples were collected and analyzed in the same laboratory. Harmonized questionnaires about 
personal characteristics, pesticide-related activities, and diet were administered. Detection rates and co- 
occurrence patterns were calculated to explore internal pesticide exposure patterns. Censored linear and logis
tic regression models were constructed to investigate the association between exposure and domestic pesticide 
usage, consumption of homegrown and organic foods, household members’ exposure, and distance to agricul
tural and forest areas. 
Results: From the 37 detected biomarkers, 3 (acetamiprid (-CH2), chlorpropham (4-HSA), and flonicamid 
(-C2HN)) were detected in ≥40% of samples. The most frequent combination of biomarkers (acetamiprid-flo
nicamid) was detected in 22 (5.5%) samples. Regression models revealed an inverse association between high 
organic vegetable and fruit consumption and exposure to acetamiprid, chlorpropham, propamocarb (+O), and 
pyrimethanil (+O + SO3). Within-individual correlations in repeated samples (summer/winter) from the 
Netherlands were low (≤0.3), and no seasonal differences in average exposures were observed in Switzerland. 
Conclusion: High consumption of organic fruit and vegetables was associated with lower pesticide exposure. In 
the two countries, detection rates and co-occurrence were typically low, and within-person variability was high. 
Our study results provide an indication for target biomarkers to include in future studies aimed at quantifying 
urinary exposure levels in European adult populations.  
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1. Introduction 

Pesticides are widely used in agriculture to protect crops. In Europe, 
more than 400 pesticide compounds are registered and marketed (Eu
ropean Commission, 2023). On a daily basis, the general population is 
exposed to a mixture of various pesticides by consumption of 
pesticide-containing food or drinks, domestic usage of 
pesticide-containing products, or living close to agricultural areas. The 
active ingredients of pesticides are intrinsically toxic and can adversely 
affect human health (Gilden et al., 2010; Cimino et al., 2017). Adverse 
health effects of single compounds, particularly reported in occupational 
settings, include cancer, neurological, mental, respiratory, reproductive, 
and developmental disorders as well as rheumatoid arthritis (Ohlander 
et al., 2020). The characterization of pesticide exposure patterns and 
exposure sources in the general population is an essential step toward 
understanding the full scope of health impacts of single compounds and 
mixtures. Exposure characterization by human biomonitoring (HBM) 
has the advantage, depending on the biomonitoring method chosen, to 
cover all possible exposure routes (dermal, oral, inhalation), thereby 
reflecting the internal exposure concentrations of a wide range of 
chemicals (Ganzleben et al., 2017). Since most pesticides are rapidly 
metabolized into more polar derivatives and excreted through urine, this 
matrix is typically used for pesticide exposure assessment (Angerer 
et al., 2007; Egeghy et al., 2011). Suspect Screening (SS) approaches 
based on liquid chromatography (LC) combined with high-resolution 
mass spectrometry (HRMS) make it possible to effectively measure 
large numbers of pesticides co-occurring in the same urine sample 
(Bonvallot et al., 2021; Huber et al., 2022; Vitale et al., 2022). This SS 
approach provides a list with annotations of pesticides and pesticide 
metabolites in a sample (Pourchet et al., 2020; Huber et al., 2022), and 
presents the measurements as semi-quantitative signal intensities. 
Although these signal intensities do not refer to absolute pesticide 
concentration levels, signal intensities for the same biomarker analyzed 
under identical laboratory settings can be compared. 

Epidemiological studies describing exposure pathways to pesticides 
are mostly focusing on occupational populations or residents living in 
agricultural areas, where the exposure levels are typically higher 
compared to the general population (Deziel et al., 2015; Teysseire et al., 
2021). Information on pesticide exposure in the general population is 
rather limited (Heffernan et al., 2016; Dahiri et al., 2021; Yusà et al., 
2022), in particular with regard to exposure to pesticide mixtures at low 
concentrations (Hernández et al., 2017) and temporal variation of 
exposure (Attfield et al., 2014; Li et al., 2019). While for the general 
population, the exposure levels and the total number of exposure 
pathways might be lower, understanding the contribution of 
non-occupational exposure sources is crucial to study the link between 
pesticide exposure and adverse health effects, as well as to propose 
preventive measures to protect the general population, specifically those 
most vulnerable (pregnant or nursing women, infants or children, and 
the elderly) (European Commission, 2022). 

The overall aim of this study was to explore pesticide mixture pat
terns of exposure in a sample of the adult population from the 
Netherlands and Switzerland using an HBM SS approach and to identify 
possible determinants. 

2. Material and methods 

2.1. Study population and sample collection 

The two studies presented here, the Dutch arm of the Survey on 
PEstiCIde Mixtures in Europe (SPECIMEn) and the Swiss pesticide sus
pect screening study, are part of the European Human Biomonitoring 
(HBM4EU) initiative and sought to generate new evidence on pesticide 
exposure in the general population. While the Dutch SPECIMEn study 
focused on exploring variations of pesticide exposure patterns in parent- 
child pairs by repeated sampling design in two seasons, the Swiss study 

provided exposure data of adults by taking single samples during three 
different seasons. 

A concise summary of the Dutch sampling strategy is provided here, 
as the study population recruitment and sample collection procedure 
have already been described in detail elsewhere (Ottenbros et al., 2023). 
In short, first-morning void urine samples were collected from partici
pants (parent-child pairs) from different locations (closer and further 
away from orchards) in two seasons (winter 2020: Jan–Mar 2020; and 
summer 2020: Jun–Jul 2020). For the current study, samples of all 105 
adults from the Dutch SPECIMEn study were included, children were 
excluded. In order to minimize the influence of pesticide applications in 
nearby agricultural areas on exposure intensity and to better assess 
baseline exposure of the adult population, only winter samples of adults 
were included in the main analyses. Farmers and other adults employed 
in the agricultural sector were not included. Participants mainly lived in 
the Betuwe area (between Arnhem-Gorinchem-Utrecht). During 
recruitment of the SPECIMEn study, participants were selected from two 
areas (close to apple and pear orchards (<250 m) and further away 
(>500 m). The study of Ottenbros et al. (2023) did not find any differ
ence based on these locations. For the current study participants from 
both areas were included and the distance from their address to agri
cultural areas was calculated. This distance to the nearest agricultural 
plot and forest from each geo-coded address was calculated using QGIS 
software (v3.4.4) using publicly available data from the Dutch Central 
Bureau of Statistics (CBS). At the time of urine collection, a question
naire was administered covering personal and household characteris
tics, activities prior to sampling, potential pesticide usage, and food 
consumption the day prior to sampling. 

In the Swiss study, 300 adults from the canton of Basel-Stadt 
participated in the HBM4EU pesticide suspect screening study (Buek
ers et al., 2022). A total of five participants indicated that they used 
pesticides for occupational use, and were thus excluded from further 
analyses. Data and sample collection were performed between January 
08, 2020, and October 10, 2020. Study participants were contacted in 
five sex-stratified recruitment waves via postal mail containing the study 
invitation letter, an information leaflet, and a response card. A total of 
6000 subjects, selected from the resident register based on age and 
long-term residency in Basel-Stadt, had been invited. Interested subjects 
were contacted after their successful electronic registration to the 
REDCap® (Research Electronic Data Capture) data collection tool 
(Harris et al., 2009), to identify a date for the urine sample collection. 
Instructions and a urine sample collection kit were sent by postal mail 
prior to the day of collection. The participants collected first-morning 
void urine samples at their homes and were asked to store the morn
ing urine sample at 4 ◦C using cooling pads and a cooling bag until the 
study team collected the sample. The urine samples were then trans
ported to and processed in the study center at Swiss TPH, maintaining 
the cold chain throughout until the biobanking of urine aliquots at 
− 80 ◦C. An electronic self-administered pre-sample questionnaire 
(answered before the day of sample collection) and a post-sample 
questionnaire (answered on the day of sample collection) were distrib
uted. Participant recruitment, data collection, and laboratory workflow 
were performed and documented using REDCap® (Harris et al., 2009). 
The "minimal geo data model" (MGDM) for agricultural land use in the 
Basel-Stadt area was used to calculate the distance of the participants’ 
geo-coded addresses to the nearest agricultural area and forest in QGIS 
3.4.4 (MMQGIS and NNJoin plugin). An exact description of the defi
nitions used for forest and agricultural areas for both countries is pro
vided in the Appendix (Table A1). 

The harmonized questionnaires administered in the two countries 
were developed in the context of the HBM4EU project and mostly con
tained identical questions in both countries. Where necessary, they were 
additionally harmonized between the two study countries. Questions 
and variables of interest for the analysis were manually compared and, 
where necessary, re-coded by the authors (for details see Appendix, 
Table A.2). The medical research ethics committee confirmed that the 
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Dutch Medical Research Involving Human Subjects Act (WMO) does not 
apply to the above-mentioned study and that therefore an official 
approval of this study by the Medical Research Ethics Committee 
(MREC) Utrecht was not required under the WMO (reference number 
WAG/mb/19/027712). The Swiss study acquired ethical approval from 
the local ethics committee (Ethikkommission Nordwest-und Zen
tralschweiz (EKNZ), 2019–02136). All participants provided their 
written informed consent. 

2.2. Suspect screening approach 

Suspect screening (SS) is a valuable approach to explore the general 
population’s pesticide exposure and the occurrence of mixtures across 
countries. Currently, analyses conducted in the same laboratory allows 
for the comparison of the semi-quantitative SS measurements for each 
biomarker. The urine samples from the Dutch and Swiss studies were 
both analyzed at the Wageningen Food Safety Research laboratory in the 
Netherlands under a harmonized and quality-controlled SS analysis 
framework. As this framework is based on elaborated work including 
expert reviews and confirmation workflow, we here refer to Huber et al. 
(2022) and Vitale et al. (2022) for a detailed description of the applied 
analytical workflow and annotation process, which includes the 
following steps: 1) pH adjustment and solid phase extraction (SPE) 
cleanup, 2) LC coupled to full scan HRMS (LC-HRMS) to measure the 
extracts, 3) data processing and analysis, 4) prioritization of supposed 
detects, and 5) spectral comparison (retention time and MS2 spectra) of 
suspected detects with reference standards for final confirmation. 

Several metabolites of the same parent compound may be included 
in the final list of pesticides, but the confidence with which a compound 
can be determined may vary. Schymanski et al. (2014) developed a 
confidence score representing the (un)certainty about the identity of a 
compound, ranging from 1: ’Fully confirmed structure’ to 5: ’Exact mass 
(m/z) of interest’. Only compounds identified by molecular structure, or 
confidence levels 1 (confirmed structure) and 2b (probable structure by 
diagnostic evidence), were considered in the current study. 

The results of the SS analysis are presented as semi-quantitative 
signal intensities of the compound detects, i.e. as indicators of expo
sure rather than quantitative concentration levels. Higher signal 

intensity scores generally correspond to higher concentrations for the 
same compound, but may also depend on levels of ion suppression due 
to matrix effects. Equal signal intensity scores for different compounds 
may correspond to different concentration levels depending on their 
ionization efficiency. Biomarkers are indicated with their parent pesti
cide name and the respective metabolite in parentheses the first time 
mentioned in the text. Upon the second mention, the name of the bio
markers will be noted only by the parent pesticide for improved read
ability. To avoid confusion, metabolites in parentheses will remain 
stated if two or more biomarkers of the same pesticide were detected. 

2.3. Statistical analyses 

For the analysis of the suspect screening data, the subset of 37 bio
markers confirmed with high confidence (Schymanski levels 1 and 2b) 
were considered. The detection frequency for each biomarker was 
calculated for the pooled dataset, as well as the Dutch and the Swiss 
population separately (see Appendix A, Figure A1). The biomarkers 
were plotted with their log-transformed SS signal intensity score and 
their detection ratio. Co-occurrence of biomarkers (detected together in 
the same urine sample) was shown graphically using an UpSet plot 
(UpSetR, v1.4.0). 

Temporal differences in both studies were assessed. In the Dutch 
study, two samples from the same individual were taken, one in each 
season, for which the intra-class correlation coefficient (ICC) was 
calculated. A linear mixed effects model with censored data (using the 
log-transformed intensity scores) was used, i.e. a multilevel Tobit model. 
This two-level (first: measurements, second: subjects) random intercept 
model was defined as follows: 

log
(
yij
)
= β+ u(2)

j + ε(1)ij  

where β represents the intercept, uj the between-subject error, and εij the 
within-subject error. 

To assess the temporal differences in the Swiss study, average in
tensity scores for each season (winter, spring, summer) were displayed 
in boxplots for the 13 most detected biomarkers (see Appendix A; 
Figure A.2). 

In order to explore determinants of exposure, censored regression 
models were constructed (Tobit, VGAM v1.1.7) (Henningsen, 2022). 
Given the explorative nature of the analyses, models were not adjusted 
for multiple comparisons. For biomarkers of only three pesticides 
(acetamiprid, chlorpropham and flonicamid), the detection rate was 
sufficiently high (at least 40% at each study side) to construct a censored 
linear regression model. For the remaining biomarkers, logistic censored 
regression models were constructed (based on detected yes/no). All 
models were a priori corrected for age (years), gender (male/female), 
BMI (normal: <25, overweight: 25–30, obese: >30), level of education 
(primary, secondary, tertiary, higher), income (<25%, 25–50%, 
50–75%, >75% of country average), and country (not for 
country-specific models). The following exposure variables were 
mutually included in the models: having a household member who used 
pesticides occupationally (yes/no), pesticide usage in the garden (up to 
3 days (3d) prior to sampling, yes/no), pesticide usage indoors (up to 3d 
prior sampling, yes/no), pesticide usage on pets (up to 3d prior sam
pling, yes/no), pesticide usage for hobby use (up to 3d prior sampling, 
yes/no), homegrown food consumption in summer (not-high (<50%), 
high (≥50%)), organic food consumption per food category (vegetables 
and fruit, bread, meat, rice, eggs, dairy; not-high (<50%), high 
(≥50%)), and distance (m) to the closest agricultural area or forest. 
Continuous variables were log-transformed (age, distance to agriculture, 
distance to forest). For sensitivity analyses, following the study of Bau
dry et al. (2019), a ‘low’ category was created for less than 10% of 
homegrown/organic foods consumption (see Appendix A; Table A.3). 
Missing values in the independent variables were imputed using mice 
(v3.14.0), with normal distribution for the continuous variables, 

Table 1 
Participant characteristics of the Dutch (NL) and Swiss (CH) studies.  

Country Netherlands 
(NL) 

Switzerland 
(CH) 

Participants, n 105 295 
Gender female, n (%) 73 (69.5) 136 (46.1) 
Mean age, years [min-max] 42.1 [29–56] 30.8 [20–39] 
BMI, n (%) 

Normal/Underweight (<25) 129 (72.3) 217 (73.6) 
Overweight (25–30) 60 (22.9) 64 (21.7) 
Obese (>30) 18 (4.8) 14 (4.7) 

Education level, n (%) 
No or only primary education 1 (1.0) 2 (0.7) 
Secondary education 5 (4.8) 1 (0.3) 
Tertiary education (post-secondary) 19 (18.1) 67 (22.7) 
University (BSc, MSc, PhD) 76 (72.3) 221 (74.9) 
Don’t Know/NA 4 (3.8) 4 (1.4) 

Household incomea, % of country average 
< 25% 1 (1.0) 61 (20.7) 
25–50% 6 (5.7) 109 (36.9) 
50–75% 49 (46.7) 47 (15.9) 
>75% 33 (31.4) 53 (18.0) 
Don’t Know/NA 16 (15.2) 25 (8.5) 

Mean distance to agricultural areas, m 
[min-max] 

976 [21–2618] 979 [24–2221] 

Mean distance to forest, m [min-max] 271 [0–1739] 566 [8–1294]  

a Income categories from the Swiss questionnaire were assigned to the <25th, 
25th - 50th, 50th – 75th and >75th percentile categories based on the publi
cation by the Swiss Federal Department of Finance (2014): https://biblio. 
parlament.ch/e-docs/377581.pdf. 
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proportional odds model for the categorical (education, income, BMI), 
and logistic regression for the remaining variables. All regression models 
were built on the pooled dataset, including an adjustment for country. 
Additionally, models were constructed for each country separately (see 
Appendix A, Figures A.3 and A.4). Results of the censored linear and 
logistic models were shown in forest plots. 

To identify whether exposure to the pesticides detected in our study 
was driven by the consumption of specific food items, we identified food 
items from the 2020 European Food Consumption Database by the Eu
ropean Food Safety Authority (EFSA) in which the 12 most frequently 
detected parent pesticides from our study were often detected (European 
Food Safety Authority et al., 2022). For each compound, the five most 
frequently contaminated food items from the EFSA database were 
selected, with contamination frequencies ranging from 2.5% to 75.9%. 
Food items irrelevant for our study population, i.e. infant formulas and 
ready-made meals for children, were excluded. A description of these 
food items and the percentage consumed in the Dutch and Swiss popu
lation is provided in Appendix A (Table A.4). 

3. Results 

3.1. Characteristics of the study samples 

An overview of the two study population characteristics is shown in 
Table 1. A total of 105 (70% female) and 295 (46% female) adults were 
included from the Dutch (NL) and Swiss (CH) HBM4EU study, respec
tively. Both the age range as well as the mean age was higher in the 
Dutch sample (range: 29–56 years, mean: 42 years) as compared to the 
Swiss participant population (range: 20–39 years, mean: 31 years), 
reflecting the differences in the target population. With regard to BMI 
and educational level, the two study populations were similar. 
Approximately 73% of participants were of normal weight/under
weight, and 73% had a university degree. The majority of the Dutch 
participants had a household income between 50 and 75% of the 
country average (47%), while the majority of the Swiss participants had 
an income of 25–50% of the country average (37%). Distance to agri
cultural areas was similar in both populations, with an average of 976 
(NL) and 979 (CH) meters to agricultural areas, but distance to forest 
areas was higher in Switzerland (NL: average of 271 m; CH: average of 
566 m). The distribution of participants based on their distance to both 
areas is included in Appendix A (Figure A.5). 

Fig. 1. The distribution of the percentage detected and the intensity scores of the 13 most frequently detected biomarkers for pesticides (noted as parent: 
F(ungicide), I(nsecticide), H(erbicide), Ac(aricide)), based on n¼105 samples from the Netherlands (NL) and n¼295 samples from Switzerland (CH). Note: 
Signal intensity scores reported here are semi-quantitative and can therefore not be directly translated into urine concentration levels. 
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3.2. Pesticide distribution in the study samples 

A total of 37 biomarkers were confirmed with high confidence 
(Schymanski levels 1 and 2b), relating to 27 different parent pesticides. 
An additional 44 biomarkers were annotated with lower levels of con
fidence (Schymanski levels 3, 4, and 5). Due to the higher levels of 
uncertainty, these biomarkers were not included in the current work. An 
overview of all 37 confirmed with high confidence biomarkers 
(including detected metabolites and types of pesticides) is presented in 
Appendix A (Table A.5). A graphical presentation of the detection rates 
and the distribution of the signal intensity scores (log-transformed) of 
the 13 most frequently detected biomarkers (related to 12 parent pes
ticides) are shown in Fig. 1. Supplementary Figure A.1 (Appendix A) 
shows the distribution of the intensity scores and the detection rates of 
all 37 biomarkers. The magnitude of detection rates was comparable in 
both countries, but detection rates were generally higher in the Dutch 
population than in the Swiss population, regardless of the between- 
country differences in the biomarkers’ intensity scores. Metabolites of 
the three pesticides acetamiprid (-CH2, insecticide), flonicamid (-C2HN, 
insecticide), and chlorpropham (4-HSA, herbicide) had detection rates 
above 40% in both the Dutch and Swiss study samples. In the 
Netherlands, also propamocarb (+O, fungicide) and pirimiphos-methyl 
(-CH2, insecticide/acaricide) were detected in at least 40% of the sam
ples. Biomarkers of an additional eight pesticides, namely fludioxonil 
(+O + C6H8O6), boscalid (+O + SO3), pyrimethanil (+O + SO3), 
fluazifop (parent), clothianidin (parent), propamocarb (parent), cypro
dinil (+O + SO3), and tebuconazole (-2H +2O), were detected in at least 
20 urine samples in each country (total detection ratio of >10%). The 
intensity scores of each biomarker were comparable for both countries. 
The highest intensity scores were found for metabolites of propamocarb 
(+O and parent), yet intensity score differences between biomarkers 
cannot be directly translated into concentration differences. 

Based on the 13 most frequently detected biomarkers, the combi
nations that co-occurred the most in each country are shown in Fig. 2. 
Only combinations occurring at least four times (arbitrary cut-off point) 
are shown, resulting in a co-occurrence pattern based on eight bio
markers and 17 different combinations. In 211 out of 400 samples 
(52.8%), at least two biomarkers were detected. The most frequent co- 
occurring pesticide biomarker patterns included different combina
tions of acetamiprid-flonicamid-chlorpropham, of which the 
acetamiprid-flonicamid combination occurred in 22 urine samples, or 
5.5%. In general, the frequency of co-occurrence for a specific 

combination of biomarkers was low. In the Netherlands, fewer co- 
occurrences were detected (relatively), while in Switzerland more co- 
occurrences were identified, with the most common pair acetamiprid- 
flonicamid found in 7.1% of the samples (see Appendix A; Figure A.6). 

3.3. Temporal variation in pesticide distribution 

Since the study design in the Netherlands included two samples per 
individual from two different seasons, we utilized this opportunity to 
calculate the ICC based on the intensity scores. The ICC values 
(considering within-individual and between-season variation) for all 13 
biomarkers were low (<0.3), indicating high within-person variability. 

The Swiss samples were collected across multiple seasons (ranging 
from January until October 2020). Seasonal averages of intensity scores 
(winter, spring and summer) for the Swiss samples showed no temporal 
differences. Results of the ICC calculations (Table A.6) and Swiss sea
sonal averages in boxplots (Figure A.2) are displayed in Appendix A. 

3.4. Determinants of exposure to acetamiprid, chlorpropham and 
flonicamid 

For acetamiprid, chlorpropham, and flonicamid, censored linear 
regression (Tobit) models were constructed to explore the potential role 
of exposure determinants. The covariate mutually adjusted associations 
of product usage (orange box around the variable names), occupational 
exposure of household members (blue), homegrown food consumption 
(yellow), organic diet (yellow), and distance to agricultural areas and 
forest (green) with the intensity score of the respective metabolite in the 
pooled study sample are shown in Fig. 3 by forest plots. For the country- 
stratified analyses, see Appendix A (Figure A.3). 

The only discernible association for the pooled data models was a 
lower urinary intensity score for acetamiprid and chlorpropham when 
organic vegetables and fruit were frequently (>50%) consumed. For 
flonicamid, no effect was detected in the pooled data model. 

3.5. Determinants of exposure to biomarkers detected in <40% of 
samples 

For the 10 biomarkers detected in between 10% and 40% of the 
samples, logistic regression models revealed no discernible association 
(log odds) with any potential determinant across biomarkers and 
countries. For the pooled dataset, forest plots for each biomarker are 

Fig. 2. Frequency of co-occurrences of the 13 most detected pesticide biomarkers in the pooled dataset, (noted as parent: F(ungicide), I(nsecticide), H 
(erbicide), Ac(aricide)). Only the most frequent combinations (in at least four urine samples) are presented, based on n = 105 samples from NL and n = 295 samples 
from CH. 
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presented in Fig. 4. Country-specific results of the logistic regression 
models can be found in Appendix A (Figure A.4). A high organic vege
table and fruit consumption was associated with a lower detection rate 
in the pooled data models for propamocarb (+O) and pyrimethanil (+O 
+ SO3). For fluazifop, a greater distance to forest areas was associated 
with an increase in detection rate in the pooled data models. In the 
pooled data model for pyrimethanil, distance to agricultural areas was 
positively associated with the detection rate. In general, the log odds of 
the non-dietary determinants had large confidence intervals, mainly due 
to low numbers of occurrence in the study population (see Appendix A; 
Table A.3). In addition, some exposure variables dropped out of the 
regression models for certain biomarkers due to the same reason of low 
occurrence (see Appendix, Table A3). 

4. Discussion 

The present study examines and compares human biomonitoring 
data on pesticides collected in a sample of the adult population in the 
Netherlands and in Switzerland as part of the HBM4EU project. Overall, 
37 biomarkers (relating to 27 parent pesticides) were detected in 400 
urine samples by a suspect screening methodology conducted at the 
same laboratory. The pesticides present in the urine samples obtained in 
the two countries were comparable, despite some differences in popu
lation characteristics. Detection rates were typically low, co-occurrence 
of biomarkers not common, and temporal variation at the level of in
dividuals high. Detection rates were highest for acetamiprid, chlor
propham and flonicamid. We observed that consumption of organic fruit 
and vegetables was an important determinant for exposure to several of 
the measured pesticide metabolites. In contrast, no clear association of 
other determinants, such as non-occupational pesticide usage, house
hold member’s exposure, distance to agricultural or forest areas, and 
other dietary habits, with signal intensity and exposure probability was 
found. 

4.1. Detection rates and exposure pathways 

Despite the considerable number of detected biomarkers (confirmed 
by molecular structure, n = 37), only three biomarkers of the parent 

pesticides acetamiprid, chlorpropham and flonicamid were detected in 
at least 40% of all samples. In the Dutch data, two additional compounds 
(pirimiphos-methyl and propamocarb) had a detection rate of ≥40%. 
These 3 most frequently detected parent pesticides were also part of 8 
selected pesticides for targeted analysis by the OBO (Research on 
exposure of residents to pesticides in the Netherlands) study, based on 
their usage frequency, monitoring data, analytical possibilities, and 
possible exposure of the residential population Figueiredo et al. (2021). 
Two of our frequently detected biomarkers (chlorpropham and floni
camid) have hardly been studied thus far, but our data suggests 
including these markers in future pesticide exposure studies. 

The high detection frequency in the Dutch (98%) and the only 
slightly lower detection frequency in the Swiss data (87%) indicate 
ubiquitous exposure to acetamiprid, despite its relatively quick excre
tion time. The negative association between high organic vegetable and 
fruit consumption and acetamiprid exposure in our study points to 
conventionally grown vegetables and fruits as potential determinants of 
exposure. Acetamiprid is a neonicotinoid (insecticide) and is approved 
in the EU as well as in Switzerland for professional use on mainly fruit 
trees and vegetables, as well as for non-occupational use (only certain 
acetamiprid-containing products). Due to neonicotinoids’ systemic 
mechanism of action, i.e. their ability to enter and persist in plant tissue, 
residues of neonicotinoids in food cannot be removed by peeling or 
washing (Magalhaes et al., 2009; Simon-Delso et al., 2015). Hence, for 
the general population, fruit and vegetable intake is likely to be the main 
exposure pathway and target to reduce exposure to acetamiprid (Zhang 
et al., 2018; Zhang and Lu, 2022). Based on the EFSA database, residues 
of acetamiprid are mainly found in cherries (48%), chili peppers (38%), 
pomelos (30%), roman rocket (29%), and pears (26%) (see Appendix A; 
Table A.4). While data on cherries, chili peppers, pomelos, and roman 
rocket consumption is not available for the Dutch and Swiss study 
population, leafy greens were consumed by 32% of the Dutch, and 54% 
of the Swiss participants. Pears were consumed slightly less in 
Switzerland (NL: 11%, CH: 7%). 

Detection rates for chlorpropham, an herbicide and plant growth 
regulator, were high in both the Dutch (63%) and Swiss (40%) samples, 
indicating frequent exposure in both populations. Our Tobit regression 
results for chlorpropham point to dietary exposure as an important 

Fig. 3. Association between potential exposure determinants with the intensity scores of acetamiprid, chlorpropham, and flonicamid in urine; results of 
the Tobit regression models for the pooled dataset. All models were corrected for age, gender, BMI, level of education, income, and country. Factors related to 
pesticide usage (orange box), household member exposure (blue), distance to agriculture/forest (green), and diet (yellow) are shown. All variables are mutu
ally adjusted. 

I.B. Ottenbros et al.                                                                                                                                                                                                                             



Environmental Research 239 (2023) 117216

7

exposure pathway, showing a negative association between organic 
vegetable and fruit consumption and chlorpropham exposure. The 
pesticide is mainly used to prevent sprouting of potatoes during storage, 
and the application is usually done using fogging or spraying equipment 
(Arena et al., 2017). EU and Swiss approval for chlorpropham was 
withdrawn in 2019, but periods of grace lasted until autumn 2020 
(European Commission, 2019). Hence, exposure through diet in the two 
study populations was still possible and likely in the year 2020. EFSA 
data shows that residues of chlorpropham can be found in 15–29% of 
potatoes (see Appendix A; Table A.4). The relatively high consumption 
of potatoes in the Netherlands (72 kg/year), as compared to Swiss 
consumption (47 kg/year), might explain the difference in detection 
rates (Helgi Library, 2020). Results from the food frequency question
naires (FFQ) additionally show frequent consumption of potatoes in 
both the Dutch and Swiss study population (see Appendix A; Table A.4), 
with 38.1% of Dutch and 28.7% of Swiss participants stating they 
consumed potatoes within 24 h before urine collection. 

The insecticide flonicamid is authorized for occupational use in both 
countries and is mainly applied on fruit, vegetables, wheat, and po
tatoes. Detection rates in the Netherlands were slightly higher (52%) 

than in Switzerland (43%), and point towards a frequent exposure to 
flonicamid in both populations. The regression model for flonicamid 
exposure in the Netherlands indicates that having a household member 
who is occupationally exposed to pesticides (self-assessment by the 
participant) is associated with higher exposure. The occupational 
exposure to flonicamid specifically in orchards was confirmed in another 
study as well (Zhao et al., 2015). Preferential consumption of organic 
bread was also associated with lower exposure to flonicamid in the 
Dutch model. In the Dutch study population, bread was consumed by 
83.8% participants within 24 h before urine collection, as compared to 
49% in the Swiss population. The top-5 flonicamid-contaminated food 
items in the EFSA database, however, do not include bread or other 
wheat products (see Appendix A; Table A.4). Instead, residues of floni
camid were mainly found in cucumbers, sweet peppers, peas, peaches, 
and brussel sprouts. In the Dutch study, data on the consumption of 
sweet peppers (30%) and peas (12%) is available, but the Swiss FFQ did 
not inquire about these food items. 

The logistic models for propamocarb (+O), pirimiphos-methyl, flu
dioxonil, fluazifop, clothianidin, propamocarb (parent), boscalid, 
cyprodinil, pyrimethanil, and tebuconazole revealed no consistent 

Fig. 4. Association between potential exposure determinants with the urinary presence of biomarkers detected 10–40%; results of the logistic regression 
models for the pooled dataset. All models were corrected for age, gender, BMI, level of education, income, and country. Factors related to pesticide usage (orange 
box), household member exposure (blue), distance to agriculture/forest (green), and diet (yellow) are shown. All variables are mutually adjusted. Note: Odds for 
certain exposure variables are missing due to low frequency of participants using pesticides, e.g. in the garden. Hence, variation in the detected biomarkers was too 
low for the variable to be included in the regression model. 
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direction of association between the determinants and exposure prob
ability across biomarkers and countries. However, a high consumption 
of organic vegetables and fruit was associated with lower exposure 
probability for propamocarb (+O) and pyrimethanil. Based on the EFSA 
database, residues of propamocarb are found in about 24% of lettuces, 
and pyrimethanil is found in about 35–45% of citrus fruit (see Appendix 
A; Table A.4). Data on the consumption of lettuces and various citrus 
fruits within 24 h before urine collection is not available for the Dutch 
and Swiss study population. 

Our findings add evidence to previous studies indicating that food 
choices have an influence on pesticide exposure in the general popula
tion (Fortes et al., 2013; Ye et al., 2015; Rempelos et al., 2022). Espe
cially for vegetable and fruit consumption, prior research consistently 
shows negative correlations between organic food consumption and 
urinary pesticide concentrations (Baudry et al., 2019, 2021; Hyland 
et al., 2019). In our study, a high consumption of organic fruits and 
vegetables was related to a lower exposure to four biomarkers. However, 
for the other food groups, the direction of association varied, with high 
levels of uncertainty. Although not assessed in this study, consumption 
of imported foods might explain rather small differences in detection 
frequencies for compounds which are applied in much larger quantities 
in the Netherlands (see Appendix A; Table A.4) as compared to 
Switzerland, such as chlorpropham (NL: 39t, CH: 0.06t). 

4.2. Within-individual variability and mixture exposure patterns 

For all biomarkers, correlation between winter and summer season 
samples of the same individual in the Dutch population was low (≤0.3). 
This indicates a high within-individual variability of exposure and 
pesticide levels in urine. Potentially important sources of within- 
individual variability are changes in lifestyle, including dietary habits, 
and environmental influences. Longer-term exposure profiles are not 
well captured in the light of quick metabolization of most pesticides and 
short biological half-lives (Egeghy et al., 2011). This is in line with 
previous research on pesticide exposure levels over time, showing high 
within-individual variability of pesticide levels in urine (Morgan et al., 
2016; Li et al., 2019). High within-individual variability was also 
detected in occupationally highly exposed groups, which can lead to 
challenges in capturing exposure windows (Fuhrimann et al., 2020). 
Similarly, a previous study analyzing the Dutch SPECIMEn and HBM4EU 
data of four other countries found no consistent effect of season on 
detection frequencies (Ottenbros et al., 2023). Considering also the 
absence of seasonal differences in average exposure in Switzerland, 
day-to-day variations of lifestyle and environmental exposures may be 
more important drivers of exposure than seasonal variations. 

Based on the exploration of co-occurrence of biomarkers within the 
same sample, the most frequent combination (acetamiprid with floni
camid) was only detected in 5.5% (n = 22) of the samples. The 17 most 
frequent combinations (found in at least four urine samples) were based 
on different variations of eight biomarkers, which also reflect the most 
frequently detected biomarkers in the studies. This points towards 
individualized and variable pesticide mixture exposure profiles among 
the general population, as found in previous HBM studies (Aerts et al., 
2018; Ottenbros et al., 2023). This is also in agreement with the 
observed high within-person variability of exposure in our study. The 
fewer co-occurrence patterns in the Netherlands likely can be explained 
by the overall smaller number of biomarkers detected in comparison to 
Switzerland. 

4.3. Strengths and limitations 

The harmonized data collection with questionnaires filled in at the 
time of urine sampling and standardized urine sample analysis at the 
same laboratory within the HBM4EU project allowed for the joint 
analysis of the two datasets. The comparison of pesticide mixtures and 
exposure pathways in adult populations across the Netherlands and 

Switzerland was additionally justified by similar pesticide regulations in 
both countries. The employment of an innovative SS methodology 
offered the opportunity to semi-quantitatively measure exposure to a 
large number of compounds and pesticide mixtures previously rarely 
examined within a single study. The results of this SS approach can also 
assist in setting priorities for future targeted analyses. 

Despite the informative insights gained from our study, a few limi
tations have to be addressed. Regarding sample collection, it should be 
noted that many pesticides are metabolized and excreted quickly. 
Hence, the distribution of individual long-term exposures will not 
adequately be captured by the collection of one first morning void urine 
sample. Longitudinal and repeated study designs (or longer sampling 
times, such as 24h voids) will be necessary to adequately monitor 
temporal variations and estimate temporally integrated pesticide expo
sure in the general population. We should also point out that part of the 
urine samples from Switzerland and all samples from the summer season 
in the Netherlands were collected during the COVID-19 pandemic. This 
might have affected diet, daily activities, and habits (Bertrand et al., 
2021). 

Second, a myriad of labels for organic and biological foods exist 
within the EU and in Switzerland. Thus, it might not have been 
straightforward for participants to declare how much of their usual food 
intake is produced organically and participants’ might have based their 
answers on different labels. Additionally, the employed FFQs did not 
query the consumption of specific food items frequently contaminated 
with pesticide residues, as reported by the EFSA database. Hence, we did 
not include single food items in the regression models, which could have 
diminished the ability to detect any effect. Future studies may profit 
from a more detailed FFQ that is better aligned with pesticide exposure 
databases. Additionally, there might be country-specific differences in 
the proportion of consumption of imported foods, which was not 
assessed in this study. 

Third, we did not observe any effect of distance to agricultural or 
forest areas on the exposure estimates. Although it must be noted that 
definitions for agricultural and forest areas were different in the two 
geospatial datasets for the two study countries (see Table A1), with the 
Dutch definitions being more precise. In addition, in contrast to the 
Swiss sample, the Dutch study design focused specifically on distance to 
orchards. 

Lastly, although the SS approach is a useful analytical methodology 
to explore exposure to large numbers of pesticides, targeted methods 
have a higher specificity and sensitivity (Pourchet et al., 2020). More
over, due to time and budget reasons, experts reviewed and prioritized 
the tentative annotations before starting the compound confirmation 
workflow, resulting in a suspect screening analysis biased toward 
halogenated and PO3-containing pesticides (Huber et al., 2022). The list 
of 37 identified biomarkers is additionally limited by technical possi
bilities and conventions. Therefore, technological advances might in
crease the number of identified biomarkers in the future. This might be 
one of the reasons why the three most commonly detected pesticides 
might not reflect the most commonly used pesticides in the Netherlands 
and Switzerland. 

For the most commonly detected pesticides, targeted methods will 
need to be applied for a more precise estimation of determinants. In 
addition, future studies should carry out improvements regarding the 
compilation of the list of tentative annotations. 

Nonetheless, taking these limitations into account, the results of this 
multi-country study contribute to the growing field of HBM of pesticides 
and offer first insights into pesticide mixture patterns and exposure 
sources and pathways in two countries in the European context. Future 
studies with a more detailed dietary and behavioral assessment, as well 
as targeted quantitative, ideally multi-biomarker, screenings of several 
HBM samples will be able to draw on these results for a more complete 
assessment of the general population’s exposure to pesticides and de
terminants thereof. 
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5. Conclusion 

Using a semi-quantitative suspect screening approach, 37 well- 
annotated pesticide metabolites (relating to 27 parent pesticides) were 
present in urine collected from participants of the adult population in 
the Netherlands and Switzerland. Detection rates were typically low, yet 
three pesticides (acetamiprid, chlorpropham, flonicamid) were detected 
in at least 40% of the samples at both study sites. High consumption of 
organic fruits and vegetables was associated with decreased urinary 
levels for acetamiprid, chlorpropham, propamocarb and pyrimethanil. 
The suspect screening applied in this study provides an example of how a 
first-tier screening exercise for pesticide exposure can be conducted. Our 
study provides an indication for target biomarkers to include in follow- 
up studies dedicated to the quantification of urinary exposure levels. 
Also, it highlights the importance of repeated sampling in light of sub
stantial within-individual variability, as well as food contamination 
reduction as a preventive target to lower pesticide exposures. 
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