353 research outputs found
Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts
Background
Typically, algorithms to classify phenotypes using electronic medical record (EMR) data were developed to perform well in a specific patient population. There is increasing interest in analyses which can allow study of a specific outcome across different diseases. Such a study in the EMR would require an algorithm that can be applied across different patient populations. Our objectives were: (1) to develop an algorithm that would enable the study of coronary artery disease (CAD) across diverse patient populations; (2) to study the impact of adding narrative data extracted using natural language processing (NLP) in the algorithm. Additionally, we demonstrate how to implement CAD algorithm to compare risk across 3 chronic diseases in a preliminary study.
Methods and Results
We studied 3 established EMR based patient cohorts: diabetes mellitus (DM, n = 65,099), inflammatory bowel disease (IBD, n = 10,974), and rheumatoid arthritis (RA, n = 4,453) from two large academic centers. We developed a CAD algorithm using NLP in addition to structured data (e.g. ICD9 codes) in the RA cohort and validated it in the DM and IBD cohorts. The CAD algorithm using NLP in addition to structured data achieved specificity >95% with a positive predictive value (PPV) 90% in the training (RA) and validation sets (IBD and DM). The addition of NLP data improved the sensitivity for all cohorts, classifying an additional 17% of CAD subjects in IBD and 10% in DM while maintaining PPV of 90%. The algorithm classified 16,488 DM (26.1%), 457 IBD (4.2%), and 245 RA (5.0%) with CAD. In a cross-sectional analysis, CAD risk was 63% lower in RA and 68% lower in IBD compared to DM (p<0.0001) after adjusting for traditional cardiovascular risk factors.
Conclusions
We developed and validated a CAD algorithm that performed well across diverse patient populations. The addition of NLP into the CAD algorithm improved the sensitivity of the algorithm, particularly in cohorts where the prevalence of CAD was low. Preliminary data suggest that CAD risk was significantly lower in RA and IBD compared to DM.National Institutes of Health (U.S.). Informatics for Integrating Biology and the Bedside Project (U54LM008748
Interprofessional education—situations of a university in Hong Kong and major hurdles to teachers and students
Studies have provided evidence that Interprofessional Education (IPE) can improve learners’ attitudes, knowledge, skills, behaviors, and competency. Traditionally, IPE is commonly seen in the healthcare professional training in tertiary education. Aging is a global issue that requires more than just a single healthcare sector. It requires interdisciplinary collaboration and understanding to tackle the issues. Therefore, IPE is essential for nurturing university students to tackle the ever-changing global challenges. In addition, different hurdles can hinder IPE development. To have a better understanding of the feasibility, acceptance, and educational value of IPE in Hong Kong, we conducted a cross-sectional quantitative study. We invited teachers and students from a Hong Kong university to fill in an online survey that evaluated their understanding and participation in IPE, their attitude toward IPE, and the barriers to developing IPE from March to June 2020. Among the 37 academic staff and 572 students who completed the survey, 20 (54.1%) teachers and 422 (73.8%) students had never heard of IPE before, and 26 (70.3%) teachers and 510 (89.2%) students had never participated in any IPE activities. Major barriers reported by teachers included an increase in teaching load (72.9%), lack of administrative support (72.9%), lack of financial support and limited budget (67.5%), difficulty to make logistic arrangements (64.8%), and problems with academic schedules and calendars (62.1%). The survey findings revealed that despite the positive attitude of university teachers and students toward IPE, barriers that could hinder the development of IPE included heavy teaching and administrative load and logistic arrangement for classroom arrangement and academic scheduling involving multiple faculties
A systematic review of the effectiveness of qigong exercise in supportive cancer care
PURPOSE: Qigong as a complementary and alternative modality of traditional Chinese medicine is often used by cancer patients to manage their symptoms. The aim of this systematic review is to critically evaluate the effectiveness of qigong exercise in cancer care. METHODS: Thirteen databases were searched from their inceptions through November 2010. All controlled clinical trials of qigong exercise among cancer patients were included. The strength of the evidence was evaluated for all included studies using the Oxford Centre for Evidence-based Medicine Levels of Evidence. The validity of randomized controlled trials (RCTs) was also evaluated using the Jadad Scale. RESULTS: Twenty-three studies including eight RCTs and fifteen non-randomized controlled clinical trials (CCTs) were identified. The effects of qigong on physical and psychosocial outcomes were examined in 14 studies and the effects on biomedical outcomes were examined in 15 studies. For physical and psychosocial outcomes, it is difficult to draw a conclusion due to heterogeneity of outcome measures and variability of the results in the included studies. Among reviewed studies on biomedical outcomes, a consistent tendency appears to emerge which suggests that the patients treated with qigong exercise in combination with conventional methods had significant improvement in immune function than the patients treated with conventional methods alone. CONCLUSIONS: Due to high risk of bias and methodological problems in the majority of included studies, it is still too early to draw conclusive statements. Further vigorously designed large-scale RCTs with validated outcome measures are needed.published_or_final_versio
Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites
Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur
Neutrino Propagation in a Strongly Magnetized Medium
We derive general expressions at the one-loop level for the coefficients of
the covariant structure of the neutrino self-energy in the presence of a
constant magnetic field. The neutrino energy spectrum and index of refraction
are obtained for neutral and charged media in the strong-field limit () using the lowest Landau level
approximation. The results found within the lowest Landau level approximation
are numerically validated, summing in all Landau levels, for strong and weakly-strong fields. The neutrino energy in
leading order of the Fermi coupling constant is expressed as the sum of three
terms: a kinetic-energy term, a term of interaction between the magnetic field
and an induced neutrino magnetic moment, and a rest-energy term. The leading
radiative correction to the kinetic-energy term depends linearly on the
magnetic field strength and is independent of the chemical potential. The other
two terms are only present in a charged medium. For strong and weakly-strong
fields, it is found that the field-dependent correction to the neutrino energy
in a neutral medium is much larger than the thermal one. Possible applications
to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference
Quantitative Analysis and Diagnostic Significance of Methylated SLC19A3 DNA in the Plasma of Breast and Gastric Cancer Patients
Background: Previously, we have examined the methylation status of SLC19A3 (solute carrier family 19, member 3) promoter and found that SLC19A3 was epigenetically down-regulated in gastric cancer. Here, we aim to develop a new biomarker for cancer diagnosis using methylated SLC19A3 DNA in plasma. Methodology/Principal Findings: SLC19A3 gene expression was examined by RT-qPCR. Methylation status of SLC19A3 promoter was evaluated by methylation-specific qPCR. SLC19A3 expression was significantly down-regulated in 80% (12/15) of breast tumors (P<0.005). Breast tumors had significant increase in methylation percentage when compared to adjacent non-tumor tissues (P<0.005). A robust and simple methylation-sensitive restriction enzyme digestion and real-time quantitative PCR (MSRED-qPCR) was developed to quantify SLC19A3 DNA methylation in plasma. We validated this biomarker in an independent validation cohort of 165 case-control plasma including 60 breast cancer, 45 gastric cancer patients and 60 healthy subjects. Plasma SLC19A3 methylated DNA level was effective in differentiating both breast and gastric cancer from healthy subjects. We further validated this biomarker in another independent blinded cohort of 78 plasma including 38 breast cancer, 20 gastric cancer patients and 20 healthy subjects. The positive predictive values for breast and gastric cancer were 90% and 85%, respectively. The negative predictive value of this biomarker was 85%. Elevated level in plasma has been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS) cases was 100%. Conclusions: These results suggested that aberrant SLC19A3 promoter hypermethylation in plasma may be a novel biomarker for breast and gastric cancer diagnosis. © 2011 Ng et al.published_or_final_versio
Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis elegans
BACKGROUND: Monascus-fermented products are mentioned in an ancient Chinese pharmacopoeia of medicinal food and herbs. Monascus-fermented products offer valuable therapeutic benefits and have been extensively used in East Asia for several centuries. Several biological activities of Monascus-fermented products were recently described, and the extract of Monascus-fermented products showed strong antioxidant activity of scavenging DPPH radicals. To evaluate whether Monascus-fermented dioscorea products have potential as nutritional supplements, Monascus-fermented dioscorea's modulation of oxidative-stress resistance and associated regulatory mechanisms in Caenorhabditis elegans were investigated. PRINCIPAL FINDINGS: We examined oxidative stress resistance of the ethanol extract of red mold dioscorea (RMDE) in C. elegans, and found that RMDE-treated wild-type C. elegans showed an increased survival during juglone-induced oxidative stress compared to untreated controls, whereas the antioxidant phenotype was absent from a daf-16 mutant. In addition, the RMDE reduced the level of intracellular reactive oxygen species in C. elegans. Finally, the RMDE affected the subcellular distribution of the FOXO transcription factor, DAF-16, in C. elegans and induced the expression of the sod-3 antioxidative gene. CONCLUSIONS: These findings suggest that the RMDE acts as an antioxidative stress agent and thus may have potential as a nutritional supplement. Further studies in C. elegans suggest that the antioxidant effect of RMDE is mediated via regulation of the DAF-16/FOXO-dependent pathway
GOALS-JWST: Mid-infrared Spectroscopy of the Nucleus of NGC 7469
We present mid-infrared spectroscopic observations of the nucleus of the nearby Seyfert galaxy NGC 7469 taken with the MIRI instrument on the James Webb Space Telescope (JWST) as part of Directors Discretionary Time Early Release Science program 1328. The high-resolution nuclear spectrum contains 19 emission lines covering a wide range of ionization. The high-ionization lines show broad, blueshifted emission reaching velocities up to 1700 km s−1 and FWHM ranging from ∼500 to 1100 km s−1. The width of the broad emission and the broad-to-narrow line flux ratios correlate with ionization potential. The results suggest a decelerating, stratified, AGN-driven outflow emerging from the nucleus. The estimated mass outflow rate is 1-2 orders of magnitude larger than the current black hole accretion rate needed to power the AGN. Eight pure rotational H2 emission lines are detected with intrinsic widths ranging from FWHM ∼125 to 330 km s−1. We estimate a total mass of warm H2 gas of ∼1.2
7 107 M ⊙ in the central 100 pc. The PAH features are extremely weak in the nuclear spectrum, but a 6.2 μm PAH feature with an equivalent width of ∼0.07 μm and a flux of 2.7
7 10−17 W m−2 is detected. The spectrum is steeply rising in the mid-infrared, with a silicate strength of ∼0.02, significantly smaller than seen in most PG QSOs but comparable to other Seyfert 1s. These early MIRI mid-infrared IFU data highlight the power of JWST to probe the multiphase interstellar media surrounding actively accreting supermassive black holes
GOALS-JWST: Unveiling Dusty Compact Sources in the Merging Galaxy IIZw096
We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared images of IIZw096, a merging luminous infrared galaxy (LIRG) at z = 0.036. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (L IR) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40%-70% of the IR bolometric luminosity, or 3-5
7 1011 L ⊙, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least 3-5
7 1012 L ⊙ kpc−2. In addition, we detect 11 other star-forming sources, five of which were previously unknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies
GOALS-JWST: Resolving the Circumnuclear Gas Dynamics in NGC 7469 in the Mid-infrared
The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst-AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9-7.6 μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Fe ii] λ5.34 μm and [Ar ii] λ6.99 μm lines are bright on the nucleus and in the starburst ring, as opposed to H2 S(5) λ6.91 μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mg v] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2 and [Fe ii] ∼ 180 pc from the AGN that also show high L(H2)/L(PAH) and L([Fe ii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into the dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies
- …