10 research outputs found

    The hepatitis B virus X gene induces p53-mediated programmed cell death

    No full text
    The human hepatitis B virus (HBV) protein pX is a multifunctional regulatory protein that is known to affect both transcription and cell growth. Here we describe induction of apoptosis in NIH 3T3 polyclonal cell lines upon stimulation of pX expression from a dexamethasone inducible mouse mammary tumor virus (MMTV)-X expression vector. The effect of long-term pX expression on the cell survival of mouse fibroblasts was confirmed in colony generation assays. This effect is not shared either by the other HBV products and it is c-myc mediated, as shown by the use of a dominant negative deletion mutant of c-myc. pX also sensitize cells to programmed cell death after exposure to DNA damaging agents. Taking advantage of stable transfectants carrying the p53val135 temperature-sensitive allele, we directly demonstrate that induction of apoptosis by pX requires p53. In p53 null mouse embryo fibroblasts pX activates transcription and confers an evident growth advantage without loss of cell viability. Although pX protein was not detectable in the experimental conditions we used, our results indicate that its expression affects both cell growth and cell death control

    REACTIVE OXYGEN INTERMEDIATES (ROIS) ARE INVOLVED IN THE INTRACELLULAR TRANSDUCTION OF ANGIOTENSIN-II SIGNAL IN C2C12 CELLS

    No full text
    Increasing evidence suggests that angiotensin II may act as a growth factor for several muscle cell types. Angiotensin II stimulation activates many immediate early response genes like c-Fos, c-Jun, c-Myc and Egr-1 in both vascular smooth muscle cells and cardiomyocytes, independently of whether a hyperplastic or hypertrophic response is taking place. In this study we report that angiotensin II significantly stimulates AP1-driven transcription in mouse skeletal muscle cells C2C12 stably transfected with a TRE-tk-CAT plasmid in a dose-dependent manner (peak stimulation at 10-5 M of angiotensin II). Moreover, angiotensin II increases the binding of the AP1 complex to its DNA target in both quiescent C2C12 myoblasts and in differentiated C2C12 myotubes. Most of the TRE-bound complexes in both unstimulated and angiotensin II-treated cells consist of c-jun/c-fos heterodimers. Using a set of different protein kinase inhibitors, including HA1004, H7, tyrphostin, genistein and staurosporine, we could demonstrate that the angiotensin II-induced AP1 binding increase is not mediated by the cAMP-dependent pathway and that protein kinase C and tyrosine kinases are involved. Treatment of C2C12 cells with H2O2 induces a dose-dependent increase in c-jun/c-fos heterodimer binding, specifically reverted by the cysteine derivative and glutathione precursor N-acetyl-L-cysteine (NAC). The observation that the induction by angiotensin II of both the AP1 DNA binding activity and DNA synthesis in quiescent C2C12 myoblasts is abolished by NAC strongly suggests a role for reactive oxygen intermediates (ROIs) in the intracellular transduction of angiotensin II signals for immediate early gene induction and for cell proliferation

    MyoD prevents cyclin A cdk2 containing E2F complexes formation in terminally differentiated myocytes

    No full text
    Withdrawal from the cell cycle of differentiating myocytes is regulated by the myogenic basic helix-loop-helix (bHLH) protein MyoD and the pocket proteins pRb, p107 and pRb2/p130, Downstream effecters of 'pocket' proteins are the components of the E2F family of transcription factors, which regulate the G(1)/S-phase transition, We analysed by EMSA the composition of E2F complexes in cycling, quiescent undifferentiated and differentiated C2C12 skeletal muscle cells, An E2F complex containing mainly E2F4 and pRb2/p130 (E2F-G(0)/G(1) complex) appears when DNA synthesis arrests, replacing the cyclinA/cdk2 containing E2F complex of proliferating myoblasts (E2F-G(1)/S complex), Serum stimulation reinduces DNA synthesis and the re-appearance of E2F-G(1)/S complexes in quiescent myoblasts but not in differentiated C2C12 myotubes, In differentiating C2C12 cells, E2F complexes switch and DNA synthesis in response to serum are prevented when MyoD DNA binding activity and the cdks inhibitor MyoD downstream effector p21 are induced, Thus, during myogenic differentiation, formation of E2F4 and pRb2/p130 containing complexes is an early event, but not enough on its own to prevent the reactivation of DNA synthesis, Using a subclone of C3H10T1/2 mouse fibroblasts stably expressing Estrogen Receptor-MyoD (ER-MyoD) chimerae, we found that estrogen directed MyoD activation prevents the reassociation of cyclinA/cdk2 to the E2F4 containing complex following serum stimulation and this correlates with suppression of E2F activity and the inability of cells to re-enter the cell cycle, Our data indicate that, in differentiating myocytes, one mechanism through which MyoD induces permanent cell cycle arrest involves p21 upregulation and suppression of the proliferation-associated cdks-containing E2F complexes formation

    Polyunsaturated fatty acids balance affects platelet NOX2 activity in patients with liver cirrhosis

    No full text
    Background: NADPH-oxidase-2 up-regulation has been suggested in liver damage perpetuation via an oxidative stress-mediated mechanism. n-6/n-3 polyunsaturated fatty acids ratio derangement has been reported in liver disease. Aim: To explore polyunsaturated fatty acids balance and its interplay with platelet oxidative stress in liver cirrhosis. Methods: A cross-sectional study in 51 cirrhotic patients and sex- and age-matched controls was performed. Serum polyunsaturated fatty acids and oxidative stress markers (urinary isoprostanes and serum soluble NADPH-oxidase-2-derived peptide) were measured. The effect on platelet oxidative stress of n-6/n-3 polyunsaturated fatty acids ratio in vitro and in vivo (1-week supplementation with 3 g/daily n-3-polyunsaturated fatty acids) was tested. Results: Compared to controls, cirrhotic patients had significantly higher n-6/n-3 polyunsaturated fatty acids ratio. n-6/n-3 polyunsaturated fatty acids ratio correlated significantly with disease severity and oxidative stress markers. In vitro experiments showed that in Child-Pugh C patients' platelets incubation with low n-6/n-3 polyunsaturated fatty acids ratio resulted in dose-dependent decrease of radical oxigen species (-39%), isoprostanes (-25%) and NADPH-oxidase-2 regulation (-51%). n-3 polyunsaturated fatty acids supplemented patients showed significant oxidative stress indexes reduction. Conclusions: In cirrhosis, n-6/n-3 polyunsaturated fatty acids imbalance up-regulates platelet NADPH-oxidase-2 with ensuing oxidative stress. Further study to evaluate if n-3 supplementation may reduce disease progression is warranted. © 2014 Editrice Gastroenterologica Italiana S.r.l

    Polyunsaturated fatty acids balance affects platelet NOX2 activity in patients with liver cirrhosis

    No full text
    Background: NADPH-oxidase-2 up-regulation has been suggested in liver damage perpetuation via an oxidative stress-mediated mechanism. n-6/n-3 polyunsaturated fatty acids ratio derangement has been reported in liver disease. Aim: To explore polyunsaturated fatty acids balance and its interplay with platelet oxidative stress in liver cirrhosis. Methods: A cross-sectional study in 51 cirrhotic patients and sex- and age-matched controls was performed. Serum polyunsaturated fatty acids and oxidative stress markers (urinary isoprostanes and serum soluble NADPH-oxidase-2-derived peptide) were measured. The effect on platelet oxidative stress of n-6/n-3 polyunsaturated fatty acids ratio in vitro and in vivo (1-week supplementation with 3 g/daily n-3-polyunsaturated fatty acids) was tested. Results: Compared to controls, cirrhotic patients had significantly higher n-6/n-3 polyunsaturated fatty acids ratio. n-6/n-3 polyunsaturated fatty acids ratio correlated significantly with disease severity and oxidative stress markers. In vitro experiments showed that in Child-Pugh C patients' platelets incubation with low n-6/n-3 polyunsaturated fatty acids ratio resulted in dose-dependent decrease of radical oxigen species (-39%), isoprostanes (-25%) and NADPH-oxidase-2 regulation (-51%). n-3 polyunsaturated fatty acids supplemented patients showed significant oxidative stress indexes reduction. Conclusions: In cirrhosis, n-6/n-3 polyunsaturated fatty acids imbalance up-regulates platelet NADPH-oxidase-2 with ensuing oxidative stress. Further study to evaluate if n-3 supplementation may reduce disease progression is warranted. © 2014 Editrice Gastroenterologica Italiana S.r.l

    Nuclear Factor kB-independent Cytoprotective Pathways Originating at Tumor Necrosis Factor Receptor-associated Factor 2

    Get PDF
    Most normal and neoplastic cell types are resistant to tumor necrosis factor (TNF) cytotoxicity unless cotreated with protein or RNA synthesis inhibitors, such as cycloheximide and actinomycin D. Cellular resistance to TNF requires TNF receptor-associated factor 2 (TRAF2), which has been hypothesized to act mainly by mediating activation of the transcription factors nuclear factor kB (NFkB) and activator protein 1 (AP1). NFkB was proposed to switch on transcription of yet unidentified anti-apoptotic genes. To test the possible existence of NFkB-independent cytoprotective pathways, we systematically compared selective trans-dominant inhibitors of the NFkB pathway with inhibitors of TRAF2 signaling for their effect on TNF cytotoxicity. Blockade of TRAF2 function(s) by signaling-deficient oligomerization partners or by molecules affecting TRAF2 recruitment to the TNF receptor 1 complex completely abrogated the cytoprotective response. Conversely, sensitization to TNF cytotoxicity induced by a selective NFkB blockade affected only a fraction of TNF-treated cells in an apparently stochastic manner. No cytoprotective role for c-Jun amino-terminal kinases/stress-activated protein kinases (JNKs/SAPKs), which are activated by TRAF2 and contribute to stimulation of activator protein 1 activity, could be demonstrated in the cellular systems tested. Although required for cytoprotection, TRAF2 is not sufficient to protect cells from TNF + cycloheximide cytotoxicity when overexpressed in transfected cells, thus indicating an essential role of additional TNF receptor 1 complex components in the cytoprotective response. Our results indicate that TNF-induced cytoprotection is a complex function requiring the integration of multiple signal transduction pathways
    corecore