34 research outputs found
Causes and consequences of intergroup conflict in cooperative banded mongooses
This is the final version of the article. Available from Elsevier Masson via the DOI in this record.Conflict between groups is a notable feature of many animal societies. Recent theoretical models suggest that violent intergroup conflict can shape patterns of within-group cooperation. However, despite its prevalence in social species, the adaptive significance of violent intergroup conflict has been little explored outside of humans and chimpanzees, Pan troglodytes. A barrier to current understanding of the role of intergroup conflict in the evolution of social behaviour is a lack of information on the causes and consequences of aggression between groups. Here, we examined the causes and fitness consequences of intergroup conflict in the banded mongoose, Mungos mungo, using a 16-year data set of observed intergroup interactions, life history and behaviour. Banded mongooses are cooperative breeders that live in highly territorial groups and engage in frequent, aggressive and violent intergroup interactions. We found that intensified population-wide competition for food and mates increased the probability of intergroup interactions, and that increased intergroup conflict was associated with periods in which groups were growing in size. Intergroup conflict had fitness costs in terms of reduced litter and adult survival but no cost to pregnant females: in fact, females were less likely to abort following an intergroup interaction than when there had been no recent intergroup conflict. Our results suggest that intergroup conflict has measurable costs to both individuals and groups in the long and short term, and that levels of conflict among groups could be high enough to affect patterns of within-group cooperative behaviour. Establishing the consequences of intergroup conflict in cooperative species can shed light on patterns of conflict and cooperation within groups and, in turn, facilitate our understanding of social evolution.Funding was provided by a Natural Environment Research Council grant no. NE/J010278/1 to M.A.C. and a European Research Council grant no. 309249 to M.A.C
Live long and prosper : durable benefits of early-life care in banded mongooses
Kin selection theory defines the conditions for which altruism or 'helping' can be favoured by natural selection. Tests of this theory in cooperatively breeding animals have focused on the short-term benefits to the recipients of help, such as improved growth or survival to adulthood. However, research on early-life effects suggests that there may be more durable, lifelong fitness impacts to the recipients of help, which in theory should strengthen selection for helping. Here, we show in cooperatively breeding banded mongooses (Mungos mungo) that care received in the first 3 months of life has lifelong fitness benefits for both male and female recipients. In this species, adult helpers called 'escorts' form exclusive one-to-one caring relationships with specific pups (not their own offspring), allowing us to isolate the effects of being escorted on later reproduction and survival. Pups that were more closely escorted were heavier at sexual maturity, which was associated with higher lifetime reproductive success for both sexes. Moreover, for female offspring, lifetime reproductive success increased with the level of escorting received per se, over and above any effect on body mass. Our results suggest that early-life social care has durable benefits to offspring of both sexes in this species. Given the well-established developmental effects of early-life care in laboratory animals and humans, we suggest that similar effects are likely to be widespread in social animals more generally. We discuss some of the implications of durable fitness benefits for the evolution of intergenerational helping in cooperative animal societies, including humans. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.Peer reviewe
Developing differences: early-life effects and evolutionary medicine
Variation in early-life conditions can trigger developmental switches that lead to predictable individual differences in adult behaviour and physiology. Despite evidence for such early-life effects being widespread both in humans and throughout the animal kingdom, the evolutionary causes and consequences of this developmental plasticity remain unclear. The current issue aims to bring together studies of early-life effects from the fields of both evolutionary ecology and biomedicine to synthesise and advance current knowledge of how information is used during development, the mechanisms involved, and how early-life effects evolved. We hope this will stimulate further research into early-life effects, improving our understanding of why individuals differ and how this might influence their susceptibility to disease. This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine’.</p
Telomere dynamics in wild banded mongooses: Evaluating longitudinal and quasi-longitudinal markers of senescence
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Telomere length and the rate of telomere shortening have been suggested as particularly useful physiological biomarkers of the processes involved in senescent decline of somatic and reproductive function. However, longitudinal data on changes in telomere length across the lifespan are difficult to obtain, particularly for long-lived animals. Quasi-longitudinal studies have been proposed as a method to gain insight into telomere dynamics in long-lived species. In this method, minimally replicative cells are used as the baseline telomere length against which telomere length in highly replicative cells (which represent the current state) can be compared. Here we test the assumptions and predictions of the quasi-longitudinal approach using longitudinal telomere data in a wild cooperative mammal, the banded mongoose, Mungos mungo. Contrary to our prediction, telomere length (TL) was longer in leukocytes than in ear cartilage. Longitudinally, the TL of ear cartilage shortened with age, but there was no change in the TL of leukocytes, and we also observed many individuals in which TL increased rather than decreased with age. Leukocyte TL but not cartilage TL was a predictor of total lifespan, while neither predicted post-sampling survival. Our data do not support the hypothesis that cross-tissue comparison in TL can act as a quasi-longitudinal marker of senescence. Rather, our results suggest that telomere dynamics in banded mongooses are more complex than is typically assumed, and that longitudinal studies across whole life spans are required to elucidate the link between telomere dynamics and senescence in natural populations.The research was funded by a European Research Council Consolidator’s Grant (no. 309249) to MAC and a Natural Environment Research Council (UK) Standard Grant (NE/G019657/1) to MAC and JDB
Maternal stress or sleep during pregnancy are not reflected on telomere length of newborns
Telomeres play an important role in maintaining chromosomal integrity.With each cell division, telomeres are shortened and leukocyte telomere length (LTL) has therefore been considered a marker for biological age. LTL is associated with various lifetime stressors and health‑related outcomes. Transgenerationaleffects have been implicated in newborns, with maternal stress, depression,and anxiety predicting shorter telomere length at birth, possibly reflecting the intrauterine growth environment. Previous studies, with relatively small sample sizes, have reported an effect of maternal stress, BMI, and depression during pregnancy on the LTL of newborns. Here, we attempted to replicate previous findings on prenatal stress and newborn LTL in a sample of 1405 infants using aqPCR‑based method.In addition, previous research has been expanded by studying the relationship between maternal sleep quality and LTL. Maternal prenatal stress, anxiety, depression, BMI, and self‑reported sleep quality were evaluated with self‑reported questionnaires.Despite sufficient power to detect similar or even considerably smaller effects than those previously reported in the literature,we were unable to replicate the previous correlation between maternal stress, anxiety, depression,or sleep with LTL. We discuss several possible reasons for the discrepancies between our findings and those previously described.Peer reviewe
A double pedigree reveals genetic but not cultural inheritance of cooperative personalities in wild banded mongooses
Personality traits, such as the propensity to cooperate, are often inherited from parents to offspring, but the pathway of inheritance is unclear. Traits could be inherited via genetic or parental effects, or culturally via social learning from role models. However, these pathways are difficult to disentangle in natural systems as parents are usually the source of all of these effects. Here, we exploit natural 'cross fostering' in wild banded mongooses to investigate the inheritance of cooperative behaviour. Our analysis of 800 adult helpers over 21 years showed low but significant genetic heritability of cooperative personalities in males but not females. Cross fostering revealed little evidence of cultural heritability: offspring reared by particularly cooperative helpers did not become more cooperative themselves. Our results demonstrate that cooperative personalities are not always highly heritable in wild, and that the basis of behavioural traits can vary within a species (here, by sex).Peer reviewe
Intragroup competition predicts individual foraging specialisation in a group-living mammal
Individual foraging specialisation has important ecological implications, but its causes in group-living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group-living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.Peer reviewe
Data collection and storage in long-term ecological and evolutionary studies : The Mongoose 2000 system
Studying ecological and evolutionary processes in the natural world often requires research projects to follow multiple individuals in the wild over many years. These projects have provided significant advances but may also be hampered by needing to accurately and efficiently collect and store multiple streams of the data from multiple individuals concurrently. The increase in the availability and sophistication of portable computers (smartphones and tablets) and the applications that run on them has the potential to address many of these data collection and storage issues. In this paper we describe the challenges faced by one such long-term, individual-based research project: the Banded Mongoose Research Project in Uganda. We describe a system we have developed called Mongoose 2000 that utilises the potential of apps and portable computers to meet these challenges. We discuss the benefits and limitations of employing such a system in a long-term research project. The app and source code for the Mongoose 2000 system are freely available and we detail how it might be used to aid data collection and storage in other long-term individual-based projects.Peer reviewe
Biased escorts: offspring sex, not relatedness explains alloparental care patterns in a cooperative breeder
Kin selection theory predicts that animals should direct costly care where inclusive fitness gains are highest. Individuals may achieve this by directing care at closer relatives, yet evidence for such discrimination in vertebrates is equivocal. We investigated patterns of cooperative care in banded mongooses, where communal litters are raised by adult ‘escorts’ who form exclusive caring relationships with individual pups. We found no evidence that escorts and pups assort by parentage or relatedness. However, the time males spent escorting increased with increasing relatedness to the other group members, and to the pup they had paired with. Thus, we found no effect of relatedness in partner choice, but (in males) increasing helping effort with relatedness once partner choices had been made. Unexpectedly, the results showed clear assortment by sex, with female carers being more likely to tend to female pups, and male carers to male pups. This sex-specific assortment in helping behaviour has potential lifelong impacts on individual development and may impact the future size and composition of natal groups and dispersing cohorts. Where relatedness between helpers and recipients is already high, individuals may be better off choosing partners using other predictors of the costs and benefits of cooperation, without the need for possibly costly within-group kin discrimination