153 research outputs found

    Interaction between Alzheimer's Aβ(25–35) peptide and phospholipid bilayers: The role of cholesterol

    Get PDF
    AbstractThere is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the accumulation of β-amyloid peptides into senile plaques, one of the hallmarks of Alzheimer's disease (AD). With the aim to clarify the molecular basis of the interaction between amyloid peptides and cellular membranes, we investigated the interaction between a cytotoxic fragment of Aβ(1–42), i.e., Aβ(25–35), and phospholipid bilayer membranes. These systems were studied by Electron Paramagnetic Resonance (EPR) spectroscopy, using phospholipids spin-labeled on the acyl chain. The effect of inclusion of charged phospholipids or/and cholesterol in the bilayer composition was considered in relation to the peptide/membrane interaction. The results show that Aβ(25–35) inserts in bilayers formed by the zwitterionic phospholipid dilauroyl phosphatidylcholine (DLPC), positioning between the outer part of the hydrophobic core and the external hydrophilic layer. This process is not significantly influenced by the inclusion of the anionic phospholipid phosphatidylglycerol (DLPG) in the bilayer, indicating the peptide insertion to be driven by hydrophobic rather than electrostatic interactions. Cholesterol plays a fundamental role in regulating the peptide/membrane association, inducing a membrane transition from a fluid-disordered to a fluid-ordered phase. At low cholesterol content, in the fluid-disordered phase, the insertion of the peptide in the membrane causes a displacement of cholesterol towards the more external part of the membrane. The crowding of cholesterol enhances its rigidifying effect on this region of the bilayer. Finally, the cholesterol-rich fluid-ordered membrane looses the ability to include Aβ(25–35)

    Efficacy of 1998 <i>vs</i> 2006 first-line antiretroviral regimens for HIV infection: an ordinary clinics retrospective investigation

    Get PDF
    Purpose: The evidence suggesting increased HAART efficacy over time comes from randomized trials or cohort studies. This retrospective multicenter survey aimed to assess the variation over time in the efficacy and tolerability of first-line HAART regimens in unselected patients treated in ordinary clinical settings. Methods: Retrospective analysis of data of all patients starting first-line HAART regimens in 1998 and 2006 at adhering centers in the Italian CISAI group. Results: For the 543 patients included, mean age was 39.1 ± 9.8y in 1998 and 41.0 ± 10.7y in 2006 (p=0.03), with a similar proportion of males. Baseline mean log10 HIV-RNA was 4.56 ± 0.97 copies/mL in 1998 vs 4.91 ± 0.96 copies/mL in 2006 (p&lt;0.001); baseline mean CD4 T-cell counts were 343 ± 314/mm3 in 1998 vs 244 ± 174/mm3 in 2006 (p&lt;0.001). The following outcomes were significantly improved at 48w in 2006: proportion with undetectable HIV-RNA (86.3% vs 58.0%; p&lt;0.001); mean increase in CD4 T-cells count (252 ± 225 vs 173 ± 246; p&lt;0.001); HAART modification (20.1% vs 29.2%; p=0.02); HAART interruption (7.3% vs 14.6%; p=0.01); proportion reporting optimal adherence (92.2% vs 82.7%, p=0.03). No differences were observed in the prevalence of grade 3-4 WHO toxicities (26.4% vs 26.6%; p=0.9). Multivariate logistic regression showed that being treated in 1998 remained an independent predictor of virological failure after several adjustments, including adherence. Conclusions: Our data from patients not included in clinical trials or cohort studies provide an additional line of evidence that the effectiveness of HAART significantly improved in 2006. Treated patients, however, were significantly older and more frequently late HIV presenters in 2006 than in 1998.</br

    Identification of protein-protein interactions of human HtrA1.

    Get PDF
    The human heat shock protein HtrA1, a member of the HtrA family of serine proteases, is a evolutionarily highly conserved factor which displays a widespread pattern of expression. The yeast two-hybrid technique was employed to identify new cellular proteins physically interacting with HtrA1, and thus potential targets of this serine protease. An enzymatically inactive HtrA1 point mutant, HtrA1-S328A, was generated and used as bait in a yeast two-hybrid system. Fifty-two plasmids were isolated from primary positive yeast clones. Subsequent sequencing and BLAST analysis revealed cDNAs encoding for 13 different proteins. These putative binding partners of HtrA1 appeared to be a) components of extracellular matrix; b) factors related to signal pathways, and c) unknown proteins. Among the 13 positive clones identified and reported here, it is worth of note that the interaction of HtrA1 with tubulin and collagen (extracellular matrix proteins) and with tuberin (cytoplasmic protein) is confirmed by other studies, and this further supports previous findings in which HtrA1 can be found active as an intracytoplasmic protein or as secreted protein as well

    Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale

    Get PDF
    The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs ("myobundles") at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 \u3bcm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions

    Isolated slaughterhouse liver as model for normothermic perfusion after warm and cold ischemia: single case report

    Get PDF
    AbstractLiver transplantation is an ultimate procedure in patients suffering end-stage liver diseases. In these last years the donation after cardiac death (DCD) has increased the pool of potential liver donors. Different studies and procedures are involved in the prevention of the main ischemic problems during the reconditioning and resuscitation of the marginal livers. Normothermic extracorporeal liver perfusion (NELP) avoids prolonged cold storage damage that is the main cause of steatosis and biliary tract ischemia in transplanted patiens. Different porcine models have been studied and developed to understand the ischemia mechanism and to select the better technique for NELP.We conducted our study using a DCD pig liver model collected from slaughterhouse. Using extracorporeal membrane oxygenation, 2000 ml of total fluid containing autologous blood, lidocaine, heparin, antibiotics, glucose 10 % solution and flunixin, the NELP was achieved. The liver was perfused over 7 hours after 48 hours of cold storage (4C°), using Eurocollins solution. During the liver withdrawal in the slaughterhouse 20 minutes were waited to simulate the warm ischemia (WI) time. Histological samples, swab for bacterial grow, blood sample, temperature and pulse oximetry saturation were collected to assess the liver viability and function. These analyses revealed stable metabolism throughout perfusion identifying a cycles 2 hours length, coinciding with recovery of oxygen uptake rates to fresh liver, as described in literature.In summary the preliminary established model of isolated hemoperfused slatherhouse liver reveals the important role of the relation between cold storage and normothermic perfusion. Moreover this preliminary study justifies further investigation of the optimization of the treatment protocols and perfusion media
    • …
    corecore