236 research outputs found

    B cell immunosenescence: different features of naive and memory B cells in elderly

    Get PDF
    Elderly people show a reduced protection against new infections and a decreased response to vaccines as a consequence of impairment of both cellular and humoral immunity. In this paper we have studied memory/na\uefve B cells in the elderly, evaluating surface immunoglobulin expression, production of the pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-\u3b1 and interleukin (IL)-10, and presence of somatic hypermutation, focusing on the IgG(+)IgD(-)CD27(-) double negative (DN) B cells that are expanded in the elderly. Our results show that na\uefve B cells from young donors need a sufficiently strong stimulus to be activated "in vitro", while na\uefve B cells from old subjects are able to produce IL-10 and TNF-\u3b1 when stimulated "physiologically" (\u3b1-CD40/IL-4), suggesting that these cells might play a role in the control of the immuno-inflammatory environment in the elderly. In addition, in the elderly there is an accumulation of DN B cells with a reduced rate of somatic hypermutation. Thus, DN B lymphocytes may be exhausted cells that are expanded and accumulate as a by-product of persistent stimulation or impaired germinal center formatio

    Streamer Propagation as a Pattern Formation Problem: Planar Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file

    Spontaneous Branching of Anode-Directed Streamers between Planar Electrodes

    Get PDF
    Non-ionized media subject to strong fields can become locally ionized by penetration of finger-shaped streamers. We study negative streamers between planar electrodes in a simple deterministic continuum approximation. We observe that for sufficiently large fields, the streamer tip can split. This happens close to Firsov's limit of `ideal conductivity'. Qualitatively the tip splitting is due to a Laplacian instability quite like in viscous fingering. For future quantitative analytical progress, our stability analysis of planar fronts identifies the screening length as a regularization mechanism.Comment: 4 pages, 6 figures, submitted to PRL on Nov. 16, 2001, revised version of March 10, 200

    Multitemperature mapping of dust structures throughout the Galactic Plane using the PPMAP tool with Herschel Hi-GAL data

    Get PDF
    We describe new Hi-GAL based maps of the entire Galactic Plane, obtained using continuum data in the wavelength range 70–500 μm. These maps are derived with the PPMAP procedure, and therefore represent a significant improvement over those obtained with standard analysis techniques. Specifically they have greatly improved resolution (12 arcsec) and, in addition to more accurate integrated column densities and mean dust temperatures, they give temperature-differential column densities, i.e., separate column density maps in twelve distinct dust temperature intervals, along with the corresponding uncertainty maps. The complete set of maps is available online. We briefly describe PPMAP and present some illustrative examples of the results. These include (a) multi-temperature maps of the Galactic H II region W5-E, (b) the temperature decomposition of molecular cloud column-density probability distribution functions, and (c) the global variation of mean dust temperature as a function of Galactocentric distance. Amongst our findings are: (i) a strong localised temperature gradient in W5-E in a direction orthogonal to that towards the ionising star, suggesting an alternative heating source and providing possible guidance for models of the formation of the bubble complex, and (ii) the overall radial profile of dust temperature in the Galaxy shows a monotonic decrease, broadly consistent both with models of the interstellar radiation field and with previous estimates at lower resolution. However, we also find a central temperature plateau within ∼6 kpc of the Galactic centre, outside of which is a pronounced steepening of the radial profile. This behaviour may reflect the greater proportion of molecular (as opposed to atomic) gas in the central region of the Galaxy

    Vialactea Visual Analytics tool for Star Formation studies of the Galactic Plane

    Get PDF
    We present a visual analytics tool, based on the VisIVO suite, to exploit a combination of all new-generation surveys of the Galactic Plane to study the star formation process of the Milky Way. The tool has been developed within the VIALACTEA project, founded by the 7th Framework Programme of the European Union, that creates a common forum for the major new-generation surveys of the Milky Way Galactic Plane from the near infrared to the radio, both in thermal continuum and molecular lines. Massive volumes of data are produced by space missions and ground-based facilities and the ability to collect and store them is increasing at a higher pace than the ability to analyze them. This gap leads to new challenges in the analysis pipeline to discover information contained in the data. Visual analytics focuses on handling these massive, heterogeneous, and dynamic volumes of information accessing the data previously processed by data mining algorithms and advanced analysis techniques with highly interactive visual interfaces offering scientists the opportunity for in-depth understanding of massive, noisy, and high-dimensional data

    Propagation and Structure of Planar Streamer Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations. In the present long paper, you find the physics of the model and the interfacial approach further explained. As a first ingredient of this approach, we here analyze planar fronts, their profile and velocity. We encounter a selection problem, recall some knowledge about such problems and apply it to planar streamer fronts. We make analytical predictions on the selected front profile and velocity and confirm them numerically. (abbreviated abstract)Comment: 23 pages, revtex, 14 ps file
    • …
    corecore