146 research outputs found

    Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. II. Mass Loss Rates and Velocity Laws

    Full text link
    We analyze the dynamics of 2D stationary line-driven winds from accretion disks in cataclysmic variables (CVs), by generalizing the Castor, Abbott and Klein theory. In paper 1, we have solved the wind Euler equation, derived its two eigenvalues, and addressed the solution topology and wind geometry. Here, we focus on mass loss and velocity laws. We find that disk winds, even in luminous novalike variables, have low optical depth, even in the strongest driving lines. This suggests that thick-to-thin transitions in these lines occur. For disks with a realistic radial temperature, the mass loss is dominated by gas emanating from the inner decade in r. The total mass loss rate associated with a luminosity 10 Lsun is 10^{-12} Msun/yr, or 10^{-4} of the mass accretion rate. This is one order of magnitude below the lower limit obtained from P Cygni lines, when the ionizing flux shortwards of the Lyman edge is supressed. The difficulties with such small mass loss rates in CVs are principal, and confirm our previous work. We conjecture that this issue may be resolved by detailed nonLTE calculations of the line force within the context of CV disk winds, and/or better accounting for the disk energy distribution and wind ionization structure. We find that the wind velocity profile is well approximated by the empirical law used in kinematical modeling. The acceleration length scale is given by the footpoint radius of the wind streamline in the disk. This suggests an upper limit of 10 Rwd to the acceleration scale, which is smaller by factors of a few as compared to values derived from line fitting.Comment: 14 pages, 3 Postscript figures, also from http://www.pa.uky.edu/~shlosman/publ.html. Astrophysical Journal, submitte

    Streamer Propagation as a Pattern Formation Problem: Planar Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file

    LOFAR HBA observations of the Euclid Deep Field North (EDFN)

    Get PDF
    © 2024 The Author(s). Published by EDP Sciences, This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present the first deep (72 h of observations) radio image of the Euclid Deep Field North (EDFN) obtained with the LOw-Frequency ARray (LOFAR) High Band Antenna (HBA) at 144 MHz. The EDFN is the latest addition to the LOFAR Two-Metre Sky Survey (LoTSS) Deep Fields, and these observations represent the first data release for this field. The observations produced a 6″ resolution image with a central rms noise of 32 μJy beam−1. A catalogue of ~23 000 radio sources above a signal-to-noise ratio threshold of five is extracted from the inner circular 10 deg2 region. We discuss the data analysis, and we provide a detailed description of how we derived the catalogue of radio sources, the issues related to direction-dependent calibration, and their effects on the final products. Finally, we derive the radio source counts at 144 MHz in the EDFN using catalogues of mock radio sources to derive the completeness correction factors. The source counts in the EDFN are consistent with those obtained from the first data release of the other LoTSS Deep Fields (ELAIS-N1, Lockman Hole and Bootes), despite the different method adopted to construct the final catalogue and to assess its completeness.Peer reviewe

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Spaces of Yoga – Towards a Non-Essentialist Understanding of Yoga

    Get PDF
    This chapter will examine some of the spaces that yoga occupies in the contemporary world, both physical and social. By looking at yoga through the focus of particular, contested spaces and locations, it will be argued that overarching essentialist definitions of yoga are impossible, although individuals and social groups can and do create essentialist definitions that are more or less useful for particular purposes. By exploring these narratives and boundaries in the context of specific locations, we can better understand what people are doing with the collection of beliefs and practices known as yoga

    The impact on sleep of a multidisciplinary cognitive behavioural pain management programme: a pilot study

    Get PDF
    Background: Reduced sleep quality is a common complaint among patients with chronic pain, with 50-80% of patients reporting sleep disturbance. Improvements in pain and quality of life measures have been achieved using a multidisciplinary cognitive behavioural therapy pain management programme (CBT-PMP) that aims to recondition attitudes to pain, and improve patients' self-management of their condition. Despite its high prevalence in patients with chronic pain, there is very limited objective evidence for the effect of this intervention on sleep quality. The primary research objective is to investigate the short-term effect of a multidisciplinary CBTPMP on subjective (measured by Pittsburg Sleep Quality Index) and objective sleep quality (measured by Actigraphy) in patients with chronic pain by comparison with a control group. The secondary objectives will investigate changes in function and mood, and then explore the relationship between objective and subjective sleep quality and physical and psychological outcome measures. Methods/Design: Patients who fulfil the inclusion criteria for attendance on the multidisciplinary CBT-PMP in the Adelaide and Meath Hospital, Tallaght, Dublin and are currently listed on the PMP waiting list will be invited to participate in this pilot study. Potential patients will be screened for sleep disturbance [determined by the Pittsburgh Sleep Quality Index (PSQI)]. Those patients with a sleep disturbance (PSQI >5) will be assigned to either the intervention group (immediate treatment), or control group (deferred treatment, i.e. the PMP they are listed for is more than six months away) based on where they appear on the waiting list. Baseline measures of sleep, function, and mood will be obtained using a combination of self-report questionnaires (the Hospital Anxiety and Depression Scale, the Short Form 36 health survey, the Pittsburgh Sleep Quality Index, the Tampa Scale for Kinesiophobia), and functional outcome measures. Sleep will be measured for seven days using actigraphy (Actiwatch 7). These measures will be repeated after the four week multidisciplinary cognitive behavioural therapy pain management programme, and at a two month follow-up. The waiting list control group will be assessed at baseline, and two months later. Analysis for the primary outcome will include between group differences of subjective and objective sleep parameters from baseline to follow-up using Independent T-tests or Mann-Whitney U tests. The secondary outcomes establishing relationships between the sleep variables and physical and psychological outcome measures will be established using multiple linear regression models. Discussion: This pilot study will evaluate the impact of a multidisciplinary CBT-PMP on both subjective and objective measures of sleep in patients with chronic pain and provide guidance for a larger clinical trial. Trial Registration: Current controlled trial ISRCTN: ISRCTN7491359

    Objective and subjective assessment of sleep in chronic low back pain patients compared with healthy age and gender matched controls: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While approximately 70% of chronic low back pain (CLBP) sufferers complain of sleep disturbance, current literature is based on self report measures which can be prone to bias and no objective data of sleep quality, based exclusively on CLBP are available. In accordance with the recommendations of The American Sleep Academy, when measuring sleep, both subjective and objective assessments should be considered as the two are only modestly correlated, suggesting that each modality assesses different aspects of an individual's sleep experience. Therefore, the purpose of this study was to expand previous research into sleep disturbance in CLBP by comparing objective and subjective sleep quality in participants with CLBP and healthy age and gender matched controls, to identify correlates of poor sleep and to test logistics and gather information prior to a larger study.</p> <p>Methods</p> <p>15 CLBP participants (mean age = 43.8 years (SD = 11.5), 53% female) and 15 healthy controls (mean age = 41.5 years (SD = 10.6), 53% female) consented. All participants completed the Pittsburgh Sleep Quality Index, Insomnia Severity Index, Pittsburgh Sleep Diary and the SF36v2. CLBP participants also completed the Oswestry Disability Index. Sleep patterns were assessed over three consecutive nights using actigraphy. Total sleep time (TST), sleep efficiency (SE), sleep latency onset (SL) and number of awakenings after sleep onset (WASO) were derived. Statistical analysis was conducted using unrelated t-tests and Pearson's product moment correlation co-efficients.</p> <p>Results</p> <p>CLBP participants demonstrated significantly poorer overall sleep both objectively and subjectively. They demonstrated lower actigraphic SE (p = .002) and increased WASO (p = .027) but no significant differences were found in TST (p = .43) or SL (p = .97). Subjectively, they reported increased insomnia (p =< .001), lower SE (p =< .001) and increased SL (p =< .001) but no difference between TST (p = .827) and WASO (p = .055). Statistically significant associations were found between low back pain (p = .021, r = -.589), physical health (p = .003, r = -.713), disability levels (p = .025, r = .576), and subjective sleep quality in the CLBP participants but not with actigraphy.</p> <p>Conclusion</p> <p>CLBP participants demonstrated poorer overall sleep, increased insomnia symptoms and less efficient sleep. Further investigation using a larger sample size and a longer period of sleep monitoring is ongoing.</p

    Why High-Performance Modelling and Simulation for Big Data Applications Matters

    Get PDF
    Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned
    corecore