1,520 research outputs found

    Openings for humanization in modern health care practices

    Get PDF
    Abma, T.A. [Promotor]Widdershoven, G.A.M. [Promotor

    The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage.

    Get PDF
    Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly(775)-Leu(776) in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.This work was supported by a British Heart Foundation programme grant, RG/009/003/27122, and peptide synthesis, by grants from Medical Research Council and Wellcome Trust.This is the author accepted manuscript. The final version can be found on the publisher's website at: http://www.jbc.org/content/early/2014/07/09/jbc.M114.58344

    Students Perceptions of Individuals with Intellectual and Developmental Disabilities and the Impact of Inclusion

    Get PDF
    The objective of this study is to determine if inclusion of people identified with intellectual and developmental disabilities (IDD) has an impact on their typically developing peers as well as determining the perceptions that college students at EKU have of people with IDD. A survey was conducted online through Surveymonkey.com and was sent out to EKU students through email. There were 82 respondents to the survey. The survey consisted of questions on age, gender, and status at EKU of each participant and asked them questions about the perceptions they have of those with IDD and if they have been involved with organizations that promote inclusion. Findings suggest that students have a positive perception of individuals with IDD

    Book Review

    Get PDF
    Reviewing Martin J. Norris, Your Boat and the Law, Lawyers Co-operative Publishing Company, 196

    Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes

    Get PDF
    Nucleotide excision DNA repair is mechanistically conserved across all kingdoms of life. In prokaryotes, this multi-enzyme process requires six proteins: UvrA?D, DNA polymerase I and DNA ligase. To examine how UvrC locates the UvrB? DNA pre-incision complex at a site of damage, we have labeled UvrB and UvrC with different colored quantum dots and quantitatively observed their interactions with DNA tightropes under a variety of solution conditions using oblique angle fluorescence imaging. Alone, UvrC predominantly interacts statically with DNA at low salt. Surprisingly, however, UvrC and UvrB together in solution bind to form the previously unseen UvrBC complex on duplex DNA. This UvrBC complex is highly motile and engages in unbiased one-dimensional diffusion. To test whether UvrB makes direct contact with the DNA in the UvrBC?DNA complex, we investigated three UvrB mutants: Y96A, a b-hairpin deletion and D338N. These mutants affected the motile properties of the UvrBC complex, indicating that UvrB is in intimate contact with the DNA when bound to UvrC. Given the in vivo excess of UvrB and the abundance of UvrBC in our experiments, this newly identified complex is likely to be the predominant form of UvrC in the cell. © 2013 The Author(s)

    The density of fibres with a rational point for a fibration over hypersurfaces of low degree

    Get PDF
    We prove asymptotics for the proportion of fibres with a rational point in aconic bundle fibration. The basis of the fibration is a general hypersurface oflow degree.<br
    corecore