398 research outputs found

    Space Cybersecurity Norms

    Full text link
    This paper addresses: Evolution of the space systems environment, including space system proliferation and space systems as critical infrastructure Cyber threats to, and vulnerabilities of, space systems Alternative approaches to meeting these threats, and the significance of norms Approaches to the development and reinforcement of norms for the cybersecurity of space systems.Comment: Presented at AIAA/ASCEND Conference on space systems cybersecurit

    Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs

    Get PDF
    We used a load-insensitive index of systolic left ventricular (LV) function and an analysis of diastolic pressure-dimension relationships to test the hypothesis that recombinant human (rh) tumor necrosis factor-alpha (TNF alpha) impairs LV function in dogs. Animals were studied 7-10 d after aseptic implantation of instrumentation to monitor cardiac output, external anterior-posterior LV diameter, and LV and pleural pressures. Data were analyzed from seven dogs that received active rhTNF alpha (100 micrograms/kg over 60 min) and from five dogs that received heat-inactivated rhTNF alpha. At 24 h after infusion of active rhTNF alpha, the slope of the LV end-diastolic dimension-stroke work relationship decreased significantly, indicating a decrement in LV systolic contractility. Simultaneously, LV unstressed dimension increased significantly, suggesting diastolic myocardial creep. The end-diastolic relationship between LV transmural pressure and normalized LV dimension (strain) was markedly displaced to the left, suggesting increased diastolic elastic stiffness. Despite these changes in LV performance, cardiac index was maintained by tachycardia. The abnormalities in LV function were resolved by 72 h. We conclude that rhTNF alpha reversibly impairs LV systolic and diastolic function in unanesthetized dogs. Because dysfunction occurs greater than 6 h after the infusion of rhTNF alpha and persists for 24-48 h, the mechanism underlying this phenomenon may involve secondary mediators or a change in myocardial gene expression

    Pooling, room temperature, and extended storage time increase the release of adult‐specific biologic response modifiers in platelet concentrates: a hidden transfusion risk for neonates?

    Get PDF
    BACKGROUND: Adult donor platelets (PLTs) are frequently transfused to prevent or stop bleeding in neonates with thrombocytopenia. There is evidence for PLT transfusion-related morbidity and mortality, leading to the hypothesis on immunomodulatory effects of transfusing adult PLTs into neonates. Candidate factors are biologic response modifiers (BRMs) that are expressed at higher rates in adult than in neonatal PLTs. This study investigated whether storage conditions or preparation methods impact on the release of those differentially expressed BRMs. STUDY DESIGN AND METHODS: Pooled PLT concentrates (PCs) and apheresis PCs (APCs) were stored under agitation for up to 7 days at room temperature (RT) or at 2 to 8 degrees C. The BRMs CCL5/RANTES, TGF beta 1, TSP1, and DKK1 were measured in PCs' supernatant, lysate, and corresponding plasma. PLT function was assessed by light transmission aggregometry. RESULTS: Concerning the preparation method, higher concentrations of DKK1 were found in pooled PCs compared to APCs. In supernatants, the concentrations of CCL5, TGF beta 1, TSP1, and DKK1 significantly increased, both over standard (≤ 4 days) and over extended storage times (7 days). Each of the four BRMs showed an up to twofold increase in concentration after storage at RT compared to cold storage (CS). There was no difference in the aggregation capacity. CONCLUSION: This analysis shows that the release of adult-specific BRMs during storage is lowest in short- and CS APCs. Our study points to strategies for reducing the exposure of sick neonates to BRMs that can be specifically associated to PLT transfusion-related morbidity

    Remote preconditioning in normal and hypertrophic rat hearts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of our study was to investigate whether remote preconditioning (RPC) improves myocardial function after ischemia/reperfusion injury in both normal and hypertrophic isolated rat hearts. This is the first time in world literature that cardioprotection by RPC in hypertrophic myocardium is investigated.</p> <p>Methods</p> <p>Four groups of 7 male Wistar rats each, were used: Normal control, normal preconditioned, hypertrophic control and hypertrophic preconditioned groups. Moderate cardiac hypertrophy was induced by fludrocortisone acetate and salt administration for 30 days. Remote preconditioning of the rat heart was achieved by 20 minutes transient right hind limb ischemia and 10 minutes reperfusion of the anaesthetized animal. Isolated Langendorff-perfused animal hearts were then subjected to 30 minutes of global ischemia and reperfusion for 60 minutes. Contractile function and heart rhythm were monitored. Preconditioned groups were compared to control groups.</p> <p>Results</p> <p>Left ventricular developed pressure (LVDP) and the product LVDP × heart rate (HR) were significantly higher in the hypertrophic preconditioned group than the hypertrophic control group while left ventricular end diastolic pressure (LVEDP) and severe arrhythmia episodes did not differ. Variances between the normal heart groups were not significantly different except for the values of the LVEDP in the beginning of reperfusion.</p> <p>Conclusions</p> <p>Remote preconditioning seems to protect myocardial contractile function in hypertrophic myocardium, while it has no beneficial effect in normal myocardium.</p

    Anti-apoptotic BCL2L2 increases megakaryocyte proplatelet formation in cultures of human cord blood

    Get PDF
    Apoptosis is a recognized limitation to generating large numbers of megakaryocytes in culture. The genes responsible have been rigorously studied in vivo in mice, but are poorly characterized in human culture systems. As CD34-positive (+) cells isolated from human umbilical vein cord blood were differentiated into megakaryocytes in culture, two distinct cell populations were identified by flow cytometric forward and side scatter: larger size, lower granularity (LLG), and smaller size, higher granularity (SHG). The LLG cells were CD41aHigh CD42aHigh phosphatidylserineLow, had an electron microscopic morphology similar to mature bone marrow megakaryocytes, developed proplatelets, and displayed a signaling response to platelet agonists. The SHG cells were CD41aLowCD42aLowphosphatidylserineHigh, had a distinctly apoptotic morphology, were unable to develop proplatelets, and showed no signaling response. Screens of differentiating megakaryocytes for expression of 24 apoptosis genes identified BCL2L2 as a novel candidate megakaryocyte apoptosis regulator. Lentiviral BCL2L2 overexpression decreased megakaryocyte apoptosis, increased CD41a+ LLG cells, and increased proplatelet formation by 58%. An association study in 154 healthy donors identified a significant positive correlation between platelet number and platelet BCL2L2 mRNA levels. This finding was consistent with the observed increase in platelet-like particles derived from cultured megakaryocytes over-expressing BCL2L2. BCL2L2 also induced small, but significant increases in thrombin-induced platelet-like particle αIIbβ3 activation and P-selectin expression. Thus, BCL2L2 restrains apoptosis in cultured megakaryocytes, promotes proplatelet formation, and is associated with platelet number. BCL2L2 is a novel target for improving megakaryocyte and platelet yields in in vitro culture systems

    In Vitro Effects of Pirfenidone on Cardiac Fibroblasts: Proliferation, Myofibroblast Differentiation, Migration and Cytokine Secretion

    Get PDF
    Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling

    Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7

    Get PDF
    Background: Heart transplantation is a lifesaving procedure for patients with end-stage heart failure. Despite much effort and advances in the field, current immunosuppressive regimens are still associated with poor long-term cardiac allograft outcomes, and with the development of complications, including infections and malignancies, as well. The development of a novel, short-term, and effective immunomodulatory protocol will thus be an important achievement. The purine ATP, released during cell damage/activation, is sensed by the ionotropic purinergic receptor P2X7 (P2X7R) on lymphocytes and regulates T-cell activation. Novel clinical-grade P2X7R inhibitors are available, rendering the targeting of P2X7R a potential therapy in cardiac transplantation. Methods and Results: We analyzed P2X7R expression in patients and mice and P2X7R targeting in murine recipients in the context of cardiac transplantation. Our data demonstrate that P2X7R is specifically upregulated in graft-infiltrating lymphocytes in cardiac-transplanted humans and mice. Short-term P2X7R targeting with periodate-oxidized ATP promotes long-term cardiac transplant survival in 80% of murine recipients of a fully mismatched allograft. Long-term survival of cardiac transplants was associated with reduced T-cell activation, T-helper cell 1/T-helper cell 17 differentiation, and inhibition of STAT3 phosphorylation in T cells, thus leading to a reduced transplant infiltrate and coronaropathy. In vitro genetic upregulation of the P2X7R pathway was also shown to stimulate T-helper cell 1/T-helper cell 17 cell generation. Finally, P2X7R targeting halted the progression of coronaropathy in a murine model of chronic rejection as well. Conclusions: P2X7R targeting is a novel clinically relevant strategy to prolong cardiac transplant survival. \ua9 2012 American Heart Association, Inc

    Cytoprotective pathways in the vascular endothelium. Do they represent a viable therapeutic target?

    Get PDF
    The vascular endothelium is a critical interface, which separates the organs from the blood and its contents. The endothelium has a wide variety of functions and maintenance of endothelial homeostasis is a multi-dimensional active process, disruption of which has potentially deleterious consequences if not reversed. Vascular injury predisposes to endothelial apoptosis, dysfunction and development of atherosclerosis. Endothelial dysfunction is an end-point, a central feature of which is increased ROS generation, a reduction in endothelial nitric oxide synthase and increased nitric oxide consumption. A dysfunctional endothelium is a common feature of diseases including rheumatoid arthritis, systemic lupus erythematosus, diabetes mellitus and chronic renal impairment. The endothelium is endowed with a variety of constitutive and inducible mechanisms that act to minimise injury and facilitate repair. Endothelial cytoprotection can be enhanced by exogenous factors such as vascular endothelial growth factor, prostacyclin and laminar shear stress. Target genes include endothelial nitric oxide synthase, heme oxygenase-1, A20 and anti-apoptotic members of the B cell lymphoma protein-2 family. In light of the importance of endothelial function, and the link between its disruption and the risk of atherothrombosis, interest has focused on therapeutic conditioning and reversal of endothelial dysfunction. A detailed understanding of cytoprotective signalling pathways, their regulation and target genes is now required to identify novel therapeutic targets. The ultimate aim is to add vasculoprotection to current therapeutic strategies for systemic inflammatory diseases, in an attempt to reduce vascular injury and prevent or retard atherogenesis

    P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes

    Get PDF
    Purinergic receptor-7 (P2X7R) signaling controls Th17 and Th1 generation/differentiation, while NOD-like receptor P3 (NLRP3) acts as a Th2 transcriptional factor. Here, we demonstrated the existence of a P2X7R/NLRP3 pathway in T cells that is dysregulated by a P2X7R intracellular region loss-of-function mutation, leading to NLRP3 displacement and to excessive Th17 generation due to abrogation of the NLRP3-mediated Th2 program. This ultimately resulted in poor outcomes in cardiac-transplanted patients carrying the mutant allele, who showed abnormal Th17 generation. Transient NLRP3 silencing in nonmutant T cells or overexpression in mutant T cells normalized the Th profile. Interestingly, IL-17 blockade reduced Th17 skewing of human T cells in vitro and abrogated the severe allograft vasculopathy and abnormal Th17 generation observed in preclinical models in which P2X7R was genetically deleted. This P2X7R intracellular region mutation thus impaired the modulatory effects of P2X7R on NLRP3 expression and function in T cells and led to NLRP3 dysregulation and Th17 skewing, delineating a high-risk group of cardiac-transplanted patients who may benefit from personalized therapy
    corecore