51 research outputs found

    Parallel Multi-Objective Hyperparameter Optimization with Uniform Normalization and Bounded Objectives

    Full text link
    Machine learning (ML) methods offer a wide range of configurable hyperparameters that have a significant influence on their performance. While accuracy is a commonly used performance objective, in many settings, it is not sufficient. Optimizing the ML models with respect to multiple objectives such as accuracy, confidence, fairness, calibration, privacy, latency, and memory consumption is becoming crucial. To that end, hyperparameter optimization, the approach to systematically optimize the hyperparameters, which is already challenging for a single objective, is even more challenging for multiple objectives. In addition, the differences in objective scales, the failures, and the presence of outlier values in objectives make the problem even harder. We propose a multi-objective Bayesian optimization (MoBO) algorithm that addresses these problems through uniform objective normalization and randomized weights in scalarization. We increase the efficiency of our approach by imposing constraints on the objective to avoid exploring unnecessary configurations (e.g., insufficient accuracy). Finally, we leverage an approach to parallelize the MoBO which results in a 5x speed-up when using 16x more workers.Comment: Preprint with appendice

    TAPIOCA: An I/O Library for Optimized Topology-Aware Data Aggregation on Large-Scale Supercomputers

    Get PDF
    International audienceReading and writing data efficiently from storage system is necessary for most scientific simulations to achieve good performance at scale. Many software solutions have been developed to decrease the I/O bottleneck. One well-known strategy, in the context of collective I/O operations, is the two-phase I/O scheme. This strategy consists of selecting a subset of processes to aggregate contiguous pieces of data before performing reads/writes. In this paper, we present TAPIOCA, an MPI-based library implementing an efficient topology-aware two-phase I/O algorithm. We show how TAPIOCA can take advantage of double-buffering and one-sided communication to reduce as much as possible the idle time during data aggregation. We also introduce our cost model leading to a topology-aware aggregator placement optimizing the movements of data. We validate our approach at large scale on two leadership-class supercomputers: Mira (IBM BG/Q) and Theta (Cray XC40). We present the results obtained with TAPIOCA on a micro-benchmark and the I/O kernel of a large-scale simulation. On both architectures, we show a substantial improvement of I/O performance compared with the default MPI I/O implementation. On BG/Q+GPFS, for instance, our algorithm leads to a performance improvement by a factor of twelve while on the Cray XC40 system associated with a Lustre filesystem, we achieve an improvement of four

    A visual Analytics System for Optimizing Communications in Massively Parallel Applications

    Get PDF
    Current and future supercomputers have tens of thousands of compute nodes interconnected with high-dimensional networks and complex network topologies for improved performance. Application developers are required to write scalable parallel programs in order to achieve high throughput on these machines. Application performance is largely determined by efficient inter-process communication. A common way to analyze and optimize performance is through profiling parallel codes to identify communication bottlenecks. However, understanding gigabytes of profile data is not a trivial task. In this paper, we present a visual analytics system for identifying the scalability bottlenecks and improving the communication efficiency of massively parallel applications. Visualization methods used in this system are designed to comprehend large-scale and varied communication patterns on thousands of nodes in complex networks such as the 5D torus and the dragonfly. We also present efficient rerouting and remapping algorithms that can be coupled with our interactive visual analytics design for performance optimization. We demonstrate the utility of our system with several case studies using three benchmark applications on two leading supercomputers. The mapping suggestion from our system led to 38% improvement in hop-bytes for MiniAMR application on 4,096 MPI processes.This research has been sponsored in part by the U.S. National Science Foundation through grant IIS-1320229, and the U.S. Department of Energy through grants DE-SC0012610 and DE-SC0014917. This research has been funded in part and used resources of the Argonne Leadership Computing Facility at Argonne National Lab- oratory, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-06CH11357. This work was supported in part by the DOE Office of Science, ASCR, under award numbers 57L38, 57L32, 57L11, 57K50, and 508050

    Topology-Aware Data Aggregation for Intensive I/O on Large-Scale Supercomputers

    Get PDF
    International audienceReading and writing data efficiently from storage systems is critical for high performance data-centric applications. These I/O systems are being increasingly characterized by complex topologies and deeper memory hierarchies. Effective parallel I/O solutions are needed to scale applications on current and future supercomputers. Data aggregation is an efficient approach consisting of electing some processes in charge of aggregating data from a set of neighbors and writing the aggregated data into storage. Thus, the bandwidth use can be optimized while the contention is reduced. In this work, we take into account the network topology for mapping aggregators and we propose an optimized buffering system in order to reduce the aggregation cost. We validate our approach using micro-benchmarks and the I/O kernel of a large-scale cosmology simulation. We show improvements up to 15× faster for I/O operations compared to a standard implementation of MPI I/O

    Comparative dataset of experimental and computational attributes of UV/vis absorption spectra

    Get PDF
    Funder: US Department of Energy, Office of Science, Office of Basic Energy Sciences, DE-AC02-06CH11357Abstract: The ability to auto-generate databases of optical properties holds great prospects in data-driven materials discovery for optoelectronic applications. We present a cognate set of experimental and computational data that describes key features of optical absorption spectra. This includes an auto-generated database of 18,309 records of experimentally determined UV/vis absorption maxima, λmax, and associated extinction coefficients, ϵ, where present. This database was produced using the text-mining toolkit, ChemDataExtractor, on 402,034 scientific documents. High-throughput electronic-structure calculations using fast (simplified Tamm-Dancoff approach) and traditional (time-dependent) density functional theory were executed to predict λmax and oscillation strengths, f (related to ϵ) for a subset of validated compounds. Paired quantities of these computational and experimental data show strong correlations in λmax, f and ϵ, laying the path for reliable in silico calculations of additional optical properties. The total dataset of 8,488 unique compounds and a subset of 5,380 compounds with experimental and computational data, are available in MongoDB, CSV and JSON formats. These can be queried using Python, R, Java, and MATLAB, for data-driven optoelectronic materials discovery
    corecore