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Abstract

Reading and writing data efficiently from storage systems is critical for high performance
data-centric applications. These I/O systems are being increasingly characterized by complex
topologies and deeper memory hierarchies. Effective parallel I/O solutions are needed to scale
applications on current and future supercomputers. Data aggregation is an efficient approach
consisting of electing some processes in charge of aggregating data from a set of neighbors and
writing the aggregated data into storage. Thus, the bandwidth use can be optimized while the
contention is reduced. In this work, we take into account the network topology for mapping
aggregators and we propose an optimized buffering system in order to reduce the aggregation
cost. We validate our approach using micro-benchmarks and the I/O kernel of a large-scale
cosmology simulation. We show improvements up to 15× faster for I/O operations compared
to a standard implementation of MPI I/O.

1 Introduction

Optimizing data movement is critical for improved performance in high performance computing
(HPC). We are witnessing the computational capability of HPC systems growing rapidly and exas-
cale is now within reach. These systems are enabling large-scale simulations with higher fidelity and
resolutions, among others, to model more complex phenomena. These simulations are generating
and accessing increasing amounts of data. Often, it is more costly to access, move or allocate data
than to actually process data. During the data lifetime, efficient access to the storage Input/Output
system1 is becoming increasingly critical. The I/O requirements can be extremely important (as
depicted by simulations estimates given in Table 1), however, the current I/O middleware and

1Called I/O for the remaining of the paper. Even if an application performs other kind of I/O (to local disk or
the network), here we consider only I/O to the storage/parallel file system
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system face several challenges with respect to scalability, contention, latency and diverse appli-
cation patterns. Also, given the limited scaling of I/O bandwidth in comparison to that of the
computational capability of HPC systems and the current expectation that this will be even dire
on future HPC systems, scalable I/O mechanisms that fully exploit the platform characteristics
will be critical.

Thus, to improve the overall efficiency of a high-end parallel system, novel solutions to cope
with efficient and optimized data access to the I/O system are needed.

Table 1: I/O requirements of diverse large-scale applications

Scientific domain Simulation Data size

Cosmology Q Continuum 2 PB / simulation

High-Energy Physics Higgs Boson 10 PB / year

Climate / Weather Hurricane 240 TB / simulation

The current large-scale computing infrastructures are often characterized by network intercon-
nects with complex topologies (e.g., multidimensional tori, dragonfly). Additionally, these systems
are architected to have a separation of computation and I/O networks to avoid I/O interference
and for functional decoupling. In these systems, I/O accesses require data movements along several
hops of various networks. Hence, optimizing the data movement requires not only staging the data
within these networks, but also to adapt I/O access pattern of the applications to the characteristics
of the filesystems and the system topology.

To reduce latency of access and contention to the I/O system while improving its scalability,
a common strategy (called two-phase I/O) is to aggregate data to a set of compute nodes (called
aggregators) and have only the aggregators communicate with the I/O system. This approach
poses several challenges such as: where to map aggregators among the various compute nodes,
or, how to optimize communications to and from these aggregators? In this work, we explore the
two-phase I/O (and specifically the write access) by carefully placing aggregators taking into ac-
count the application’s communication needs (I/O access patterns), the topology of the underlying
interconnect, and effective pipelining of communications to the aggregators and to the storage. The
goal is to balance the aggregation phase cost with the I/O phase cost so as to minimize the overall
time the application spends in writing the data to the storage system.

The main contribution of this paper is a novel approach to optimizing I/O data aggregation
on large scale HPC infrastructures. First, we present a novel aggregator placement optimization
framework and this framework is used to evaluate various approaches for data movement, including
our topology-aware method. Next, we discuss a holistic end-to-end approach for I/O that goes
beyond aggregator placement to also include pipelined aggregation buffering, file system awareness,
and efficient inter-node communication (one-sided) for both the aggregation and I/O. Finally, we
evaluate our approaches at scale on supercomputers and demonstrate that our approach significantly
outperforms state-of-the-art techniques and represents a promising approach for scalable I/O on
HPC systems.
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2 Context and Motivation

In this section we start by describing the I/O subsystems of current and expected large-scale
supercomputers. Next, we discuss the two-phase I/O algorithm used in MPI. Finally, we highlight
the limitations of the current two-phase approach.

2.1 Storage systems on large-scale supercomputers

The current high-performance system architectures have undergone several improvements in order
to tackle the I/O challenges. The networks topologies, despite being more complex, tend to reduce
the distance between the data and the storage. While the compute nodes and the I/O infrastruc-
tures are commonly partitioned to avoid I/O interference, the interconnect networks bring these two
entities closer. This partitioning is a characteristic of the IBM BG/Q supercomputers where the
I/O nodes are dedicated to the I/O tasks and separated from the 5D-torus topology [6]. Similarly,
Cray has also chosen a similar strategy for its supercomputers wherein the system has a subset of
nodes called LNET nodes to manage I/O. To optimize the I/O bandwidth, a dragonfly network
has been implemented reducing the number of hops from a compute node to the LNET node.

However, the amount of data produced by the applications remains extremely high and this
sole architectural solution is not sufficient. Writing data out for future analysis suffers an I/O
bandwidth limitation whereas storing data in memory for in situ analysis is bounded by the amount
of available memory. Similar to solutions to overcome the memory bottleneck by adding more levels
of hierarchy with faster but smaller memory close to the computing units, an approach to improve
I/O performance is to create new tiers of storage between the main memory of the compute nodes
and the storage system. Some supercomputers made the choice of allocatable DRAM by embedding
Intel Knights Landing processors. Others chose to add NVRAM (on-node SSD for instance) to have
a trade-off between cost, bandwidth and capacity. Burst buffer nodes as the ones used on the Cray
Cori infrastructure [2] are also a method to achieve high I/O performance. In this case, nodes
similar to I/O nodes contain SSDs for data staging.

2.2 MPI Two-phase I/O

The MPI-2 standard [9] introduced the notion of two-phase I/O [7] for collective I/O operations.
The goal of this improvement is to optimize the I/O performance by reducing the network con-
tention, increasing the I/O bandwidth and simplifying the data access pattern. In two-phase I/O,
a subset of processes called aggregators is responsible for the I/O phase. These aggregators are
elected during the MPI collective I/O calls. Each aggregator manages a chunk of contiguous data
in file from a subset of processes. For read access, the aggregators load a part of the file and dis-
tribute smaller chunks of data to a subset of processes. For write access, an aggregator gathers data
from a subset of processes in a contiguous way and writes the aggregated data to the file system
(through an I/O node if necessary). A toy example of the two-phase I/O mechanism is shown in
Figure 1. In this example, four processes need to write non-contiguous pieces of data to a shared
file. During the aggregation phase, two processes elected as aggregators gather these pieces of data
into contiguous chunks in memory (X then Y then Z). Once this phase is finished, the aggregators
effectively write the data in file (I/O phase).
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Figure 1: Two-phase I/O mechanism

2.3 Limitations

The two-phase I/O technique has several limitations. First, this two-phase approach works well for
large messages but performs poorly with processes writing small data pieces (e.g., less than 1 MB).
Secondly, some MPI I/O implementations of two-phase I/O take into account the topology of the
machine to partition and elect aggregators (e.g. ROMIO considers the BG/Q topology to partition
the number of elected aggregators). However, they do not use the topology information to propose
an efficient aggregator placement policy. Moreover, beyond the characteristics of the underlying
topology, the a priori details of the application’s I/O patterns also could help to compute the
placement, however, this is not currently considered. This is critical for emerging application I/O
patterns in multi-physics applications, analysis outputs, etc. Therefore, in this paper we address
the problem of mapping aggregators taking into account both the topology and the I/O access
pattern of the application while optimizing performance for short messages.

3 Related Work

Parallel I/O is an active research topic due to the increasing requirements of applications for
data movement to memory or storage. From a filesystem perspective, GPFS [12] or Lustre [1]
are examples of widespread highly scalable parallel file systems. At a library or application level,
parallel I/O libraries such as MPI I/O, part of the MPI-2 [9] standard, on top of parallel filesystems
is commonly deployed. In these, collective I/O allows to achieve improved performance. For this,
Chaarawi et al. [4] evaluate various collective I/O write algorithms. Other approaches to optimizing
collective I/O have also been undertaken using techniques such as process placement based on the
I/O pattern [19] or collective I/O autotuning with machine learning [11]. One of the de facto
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collective I/O algorithm is called two-phase I/O [7]. This method adds a level of hierarchy in
collective I/O phases by aggregating data on a subset of processes before writing it onto the storage
system (more details are given in section 2.2). ROMIO [13] is a popular implementation of MPI I/O
using two-phase I/O included in the widely-used MPICH library [10]. There have been a number of
approaches to improve this library and the two-phase I/O algorithm [14, 15, 16]. Approaches based
on multi-threading to overlap aggregation and I/O phases using double buffering have been studied
in [18, 17]. The number of aggregators or the buffer size needed in collective I/O remains still an
open topic [5]. Finally, the placement of aggregators is a well-known problem. Certain approaches
focus on data locality and a polynomial time assignment algorithm (the Hungarian algorithm) to
reduce the communication between compute nodes and aggregators [8]. Others concentrated their
efforts on the specific problem of sparse data patterns on BG/Q by offering an algorithm to take
paths on the network topology into account [3]. A more general method designed to increase the
I/O bandwidth of collective I/O for the previous version of IBM supercomputers BG/P has been
proposed in [20]. Our approach differs from the above solutions by attempting to combine both
an optimized buffering system and a topology-aware quantitative aggregators mapping strategy
targeting any kind of architecture and being extensible to address new tiers of storage. It does so
while also accounting for the application’s I/O pattern.

4 Our Approach

Our approach consists of optimizing the data aggregation by taking into account critical parame-
ters including the topology of the underlying architecture, the filesystem block size, and the double
buffering with pipelined data movement achieved via one-sided communications. Thus, we devel-
oped a new data movement optimization library implemented in C++. This provides two simple
functions to the user of parallel I/O while hiding all complexities of the underlying system. In
fact, from the application developer point of view, using this aggregation mechanism comes down
to describing the upcoming I/O operations (data sizes and offset in file) through an initialization
function and commit the data instead of directly calling MPI File write in the application. This
section first describes the parameters we identified to optimize the two-phase I/O method, and,
next, discusses implementation details. Finally, we describe the challenges we address for scalable
performance.

4.1 Aggregator Placement

The various implementations of the MPI-2 standard propose a couple of algorithms for two-phase
I/O and particularly for aggregators mapping. In MPICH a strategy consists in choosing, for n
aggregators, the first one on the bridge node (the compute node connected to the I/O node) and
select the n − 1 remaining ones on different nodes based only on their rank. For instance, let’s
consider 4 aggregators. The first one will be assigned on the bridge node. For the next three,
the ranks of all processes are sorted and the aggregators are picked in this order such that no two
aggregators are on the same node. Depending on the process mapping strategy, this placement
can easily choose aggregators on neighboring nodes and thus create contention, or these could be
selected far from the storage system leading to a large additional latency cost. Our strategy consists
in electing the aggregators whose number is based on a fixed ratio (i.e. n aggregators per k nodes)
in order to find a compromise between the cost of aggregating data and the cost of sending data
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to the storage system (we can extend this to other types of memory: burst buffers, NVRAM, ...).
To achieve this, we create a level of partitioning where a partition, which is subset of processes,
contains processes that write a contiguous piece of data. Inside each partition, a process is elected
as aggregator according to the topology and the amount of data to manage. Thus, the number
of partitions corresponds to the number of aggregators. It has to be noted that a process can be
involved in more than one partition. In this case we consider only the amount of data related to a
given partition.

Figure 2 shows a simple example of partitioning and aggregator election on a grid according to
our approach. In this figure, two more strategies are depicted. Indeed, to evaluate our topology-
aware placement, we implemented three other methods. These simpler strategies can be described
as follow:

• Shortest path: a rank hosted on the node with the smallest distance to the storage system is
elected as an aggregator;

• Longest path: same as the previous strategy except that the longest distance to the storage
system is considered.

• Greedy: the lowest rank in partition is the aggregator is selected;

Compute node

Bridge node

Storage system

Aggregator

L

S

S

L

Shortest path

Longest path

Greedy

Topology-Aware

Aggregation 
partition

T

G

G

T

Figure 2: Data aggregation for I/O: simple partitioning and aggregator election on a grid with one
different strategy per partition.

As explained before, our topology-aware strategy aims at taking into account the network
topology and the amount of data exchanged between ranks and their aggregator. More precisely,
we defined an objective function to minimize the time to perform the I/O and find an efficient
aggregator placement.

Given, for each partition:
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• VC : The set of compute nodes performing aggregation in the partition.

• A ∈ VC : An aggregator chosen among compute nodes

• ω(u, v): The data size exchanged between nodes u and v

• d(u, v): The number of hops between nodes u and v

• IO: The storage system (I/O node) of the partition.

• l: The interconnect latency

• Bi→j : The bandwidth from node i to node j.

For the first step of our strategy, each process involved in an aggregation partition computes
the cost of aggregating data from all other ranks if it were chosen as the aggregator. This can be
done in a distributed way once all the processes know the amount of data produced by each of
them. We then keep the maximum cost as all the others will be bounded by this one. Formally,
each process A computes the cost C1:

C1 = max

(
l × d(i, A) +

ω(i, A)

Bi→A

)
, i ∈ VC , i 6= A

The second step consists in computing the cost of sending the aggregated data to the storage
system. The first version of our model took into account the total amount of aggregated data to
compute this cost. However, while cost C1 considers a small amount of data (the data sent by
the rank with the maximal cost), C2 considers the sum of the aggregated data. This creates an
imbalance between these two cost and can make C1 negligible compared to C2. To avoid this, in
C2, we normalize the aggregated data with the number of processes involved in the aggregation
phase to have C1 and C2 of the same order of magnitude. For each process A, we define the cost
C2 as:

C2 = l × d(A, IO) +
ω(A, IO)

|VC | ×BA→IO

Our topology-aware strategy minimizes the objective function defined as the sum of the costs C1

and C2. More generally, this placement policy can be formulated as the solution for each partition
of this objective function:

TopoAware(A) = min (C1 + C2)

This sum is computed by each process independently in O(n), n = |VC |. Indeed the topol-
ogy characteristics d, l, B can be precomputed at start time and the data exchange between
processes depends on the data distribution and is accessible in constant time after a preliminary
call to MPI Allgather. Hence, finding the process having the minimum cost is done through a
MPI Allreduce with the MPI MINLOC operation. All these MPI calls involve meta-data of very
small size compared to the actual data and hence have a negligible cost compared to sending the
application data.
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4.2 File System Block Size

The block size of a filesystem corresponds to an indivisible block of memory on disk requested for
each read or write operation, no matter the size of data involved. Thus, writing a piece of data
smaller than the block size implies a lock on a piece of memory of size blocksize. In the context
of parallel I/O, the multiplication of locks on disks creates an important bottleneck. To evaluate
the impact of the block size, we wrote a simple benchmark and ran it on a BG/Q supercomputer
and its GPFS high-performance filesystem. This benchmark works as follow: one process per node
writes the same amount of data to a single shared file at the corresponding offset. The results are
depicted in Figure 3. The purple curve shows the bandwidth achieved while writing a chunk of
data which is a multiple of the filesystem block size (8 MB in this case). The green curve shows
this bandwidth with the same chunk of data plus 1 kB. We see that writing a multiple of the block
size can perform up to 3x better than the non-aware case.
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Figure 3: Benchmark measuring the impact of the filesystem block size for write operations.

In order to reduce this penalty, our algorithm has been designed to aggregate and write on an
aggregator an amount of data which is a multiple of the filesystem block size. In other words, the
buffers used by the aggregators to stage data during the I/O phase are allocated as a multiple of
the filesystem block size. The default buffer size used in MPI two-phase I/O implementations has
this property as well.

4.3 Pipelined Aggregation Buffers

In order to optimize both the aggregation phase and the I/O phase, each aggregator manages two
buffers and overlaps the communications. In fact, as the aggregation phase is performed with RMA
operations (one-sided communication), no synchronization is needed between the processes sending
data to the aggregators and the aggregators themselves. Moreover, the aggregators perform non-
blocking independent writes to the storage system making themselves available for other operations.
In this way the aggregators are able to flush a full buffer while receiving data in the second one.
This loop is performed as many times as necessary to process the data. Each instance of buffer
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filling and flushing is called a round. A global round is equivalent to the same buffer of all the
aggregators filled (if applicable) and flushed.

4.4 Algorithm

The Algorithm 1 describes the core function of our aggregation process; that is, the Commit function
called by the processes to write a piece of data. This function is recursive in order to split a piece
of data among different buffers and/or aggregators. As we initialize our aggregation step with the
upcoming writes, each process knows for each piece of data the target tuple {round, aggregator,
buffer}. The lines 2 to 5 return these values. The chunk size corresponds to the amount of data
to be written. If the piece of data fits in one buffer, this amount is equal to the data size given as
parameter. In case of data splitting, this amount is smaller than the data size and an extra round is
necessary. The while loop starting from line 8 blocks the processes whose current round is different
from the global round in a fence (barrier in the context of MPI one-sided communication). Only
the processes with the matching round can lift the barrier. If a process passing this fence is an
aggregator, it flushes the appropriate buffer into the file. Line 16 just puts the data into the target
buffer. If the process has written all its data, it enters a portion of code similar to the one starting
from line 8. Else, we recursively call this Commit function again while updating the parameters.

Algorithm 1: Data Aggregation

1 Function Commit (data, size, offset)
2 round← GetRound();
3 aggr ← GetAggregatorRank();
4 chunkSize← GetRoundSize(round);
5 bufferId← globalRound % 2;
77

8 while round 6= globalRound do
9 Fence ();

10 if I am an aggregator then
11 Write Buffer (bufferId);

12 globalRound← globalRound + 1;
13 bufferId← globalRound % 2;

1515

16 Put (data, chunkSize, offset, aggr, bufferId);
1818

19 if chunkSize = size then
20 while round 6= m round do
21 Fence ();
22 if I am an aggregator then
23 Write Buffer (bufferId);

24 round← round + 1;

25 else
26 Commit (data + roundSize, size− chunkSize, offset + chunkSize);
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4.5 Challenges at scale

When bringing these optimizations at scale, we needed to address two challenges in our model.
Firstly, the partitioning phase can appear costly for certain cases. In particular, if one needs to
partition a large MPI communicator, the fact that a process can be involved with several aggrega-
tors limits the parallelization of this part of the algorithm. In MPI, a communicator splitting cannot
produce sub-communicators with an intersection. Put it in another way a process cannot belong
to more than one sub-communicator resulting from a MPI Comm split. It implies that we have to
perform the aggregator mapping partly sequentially. Moreover, some MPI Comm split implemen-
tations can be very unoptimized (e..g., on BG/Q) increasing the computation time. However, even
if in most cases this limitation is absent, it has to be noted that we compute the aggregators map-
ping once for the whole application lifetime reducing its impact. Secondly, it is clear that to avoid
contention our implementation needs to keep at most one aggregator per node. As a consequence,
we have to update a list of nodes already selected as aggregators. This list is shared among at least
a subset of processes. Because of this, some synchronization steps are necessary.

5 Evaluation

To validate our approach, we carried out experiments with both micro-benchmarks as well as
with a real application called HACC from which we extracted the I/O kernel. We conducted
our experiments on the Mira supercomputer, an IBM BG/Q supercomputer located at Argonne
National Laboratory.

5.1 Targeted supercomputer

Mira is an IBM BG/Q supercomputer hosted at Argonne National Laboratory with 49,152 compute
nodes each with 16 hyper-threaded PowerPC A2 cores (1600 MHz). Each node has 16 GB of main
memory. These nodes are interconnected through a 5D torus high-speed network giving a theoretical
bandwidth of 1.8 GBps per link. The BG/Q architecture splits the nodes into Psets. A Pset is a
subset of nodes sharing the same I/O node. On Mira, this subset contains 128 nodes including two
bridge nodes. A bridge node is a regular compute node connected to an I/O node (so each I/O
node is connected to two bridge nodes). The Figure 4 shows this architecture. Note that for all the
experiments using our aggregation strategy, we set the bandwidth between two nodes to 1.8 GBps
(theoretical bandwidth) and the latency to 20 ms (measured). We compiled the test applications
and our library with GCC v4.4.7 and used the default MPI installation on Mira, which is based on
MPICH2 v1.5.

The MPI I/O part is based on ROMIO, an open-source high-performance implementation. MPI
I/O has a highly configurable set of parameters; the default number of aggregators on Mira is set to
16 per Pset and the size of the buffer employed to aggregate the data is set to 16 MB. The default
aggregator mapping strategy used by ROMIO on BG/Q is the one described in Section 4.1. The
version of MPI-2 hosted on Mira has been optimized for the BG/Q platform.

5.2 Evaluation of the placement strategies

We evaluate our topology-aware strategy with a micro-benchmark and compare this approach to
the other approaches described in section 4.1, namely, greedy, shortest path and longest path. The
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micro-benchmark works as follow: Each rank produces an amount of data distributed randomly
between 0 and 2 MB. In order to reduce the file system noise, the data were sent to the null
device of the I/O nodes instead of a real file. This effectively measures the performance of just
aggregating the data and moving this out to the storage system. It eliminates any I/O contention,
and thus, performance degradation at the storage system. The experiments were carried out on
512 Mira-nodes with 16 ranks per node (8192 ranks). We set the number of aggregators to 16
for the MPI COMM WORLD communicator (i.e. 4 aggregators per Pset) to intensify the impact of the
placement policy. The aggregator’s buffer size was set to 16 MB. The results are shown in Table 2
and are calculated from 20 runs.

Table 2: Impact of aggregators placement strategy

Strategy I/O Bandwidth (MBps) Aggr. Time/round (ms)

Topology-Aware 2638.40 310.46

Shortest path 2484.39 327.08

Longest path 2202.91 370.40

Greedy 1927.45 421.33
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These results illustrate the I/O bandwidth achieved and the time needed per round for the two-
phase I/O step. We notice that the topology-aware strategy gives the best bandwidth compared
to the other methods. The shortest-path strategy offers the second best performance and greedy
is the worst.

5.3 Impact of the number of aggregators and the buffer size

Finding the tradeoff between the number of aggregators and the buffer size is an open problem
[5]. Even though it is not the main purpose of this paper, it is important to understand the
behavior of our topology-aware aggregation algorithm with these parameters. For this, we carried
out experiments with a micro-benchmark where we vary the number of aggregators and the buffer
size. We ran these experiments on 1024 Mira-nodes, with 16 ranks per node, and with 1 MB
produced by each process. The data is again written to the null device of the I/O nodes to
understand the performance of the aggregation and data movement. Table 3 presents these results.

Table 3: I/O Bandwidth (in MBps) achieved by a simple benchmark with a topology-aware aggre-
gator placement while varying the number of aggregators and the buffer size.

#Aggr/Pset
Buffer size

8 MB 16 MB 32 MB

8 7652.49 8848.28 9050.71

16 7318.15 8774.58 9331.84

32 6329.95 7797.12 8134.41

In these experiments, the third column and row corresponds to the default parameters set in
ROMIO on Mira: 8 aggregators per Pset and 16 MB of buffer size. With our algorithm, these
settings produce a good I/O bandwidth. Moreover, the best I/O bandwidth is reached with larger
buffers sizes. These observations are useful for future improvements and tuning.

5.4 HACC-IO

HACC-IO is the I/O kernel of HACC (Hardware Accelerated Cosmology Code). This large-scale
cosmological application requires the massive compute power of supercomputers to simulate the
mass evolution of the universe with particle-mesh techniques. In terms of I/O, every process of a
HACC simulation manages a number of particles. Each particle is defined by nine variables: XX,
Y Y , ZZ, V X, V Y , V Z, phi, pid and mask, corresponding to the coordinates, the velocity vector
and relevant physics properties. The size of a particle is 38 bytes. A useful base value is: 25,000
particles require approximately 1 MB.

5.4.1 Impact of data layout

During our experiments, we observed that ROMIO performs very poorly in case of an array of
structure (AoS) data layout. This layout is the default one used by HACC. To have a good
overview of the performance with the different standard strategies, we implemented an alternative
data layout based on structures of array (SoA). Figure 5 describes the differences between these
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two layouts in the context of HACC. For all the next experiments with this application, results for
both these layouts are shown (except for POSIX I/O which performs independent I/O).
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Processes
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X Y Z X Y Z X Y Z X Y Z

Data layouts
in file

X X X X Y Y Y Y Z Z Z Z

Array of 
structures
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Figure 5: Data layouts implemented in HACC

The difference between the two types of organizations in terms of I/O can be noted. In the case
of HACC, where the particles are written by variables, an AoS design needs more time to fill an
aggregator buffer as it is bounded by the time necessary to write all the variables from one process.
With a SoA layout, all the processes write the same variables at the same time. The time required
to fill a buffer gets closer to the time needed to write one variable from one process. Except in few
cases, we observed this impact in our results. It also explains the performance of ROMIO.

5.4.2 Results

The Figures 6 and 7 show respectively the results when writing to a single file shared by all the
processes and to one file per Pset. These experiments were run on 1024 Mira-nodes and 16 ranks
per node. For each strategy, we vary the number of particles per rank. To conduct fair experiments,
we set the number of aggregators to 16 per Pset and the buffer size to 16 MB, as the default settings
of ROMIO on Mira.

Writing to a single shared file (Figure 6) results in poor performance in general. On 1024 nodes,
the effective peak I/O bandwidth is estimated to be 22.4 GBps (while the theoretical bandwidth is
28.8 GBps). The best performance we can achieve in this case does not exceed 5 GBps. Neverthe-
less, only our topology-aware strategy is able to achieve this. We can also notice that our approach
outperforms both POSIX I/O and MPI I/O regardless of the data size or the data layout. This
difference is particularly substantial on small messages and tends to decrease while the data size
per rank increases. When 5000 particles are written by a process (∼200 KB), in the case of an
array of structures data layout, our method provides an I/O bandwidth 15× higher than MPI I/O.
This factor is 4× larger with a different data layout (SoA). As explained before, we can clearly see
the poor performance obtained with MPI I/O on a specific data layout.

13



 0

 1

 2

 3

 4

 5

 6

5000 15000 25000 35000 50000 100000

B
a
n
d
w

id
th

 (
G

B
p
s)

#Particles (38 Bytes/particle)

Write BW comparison according to the strategy and the data size
1024 nodes - 16 ranks/node - Single shared file

Topology-aware AoS
MPI I/O AoS

POSIX I/O

Topology-aware SoA
MPI I/O SoA

Figure 6: Single shared file from 1024 nodes (16 ranks/node)

Dividing the output data into several files, also known as sub-filing, appears to be an attractive
solution. The results presented in Figure 7 are a relevant illustration with I/O bandwidth close
to the peak value. Like the previous results, we observe that our strategy based on topology-
aware placement and optimized buffers (block size awareness and pipelining) achieves much better
performance than the standard approaches. Again, this gap decreases slightly as the data size
increases. However, the I/O bandwidth remains higher with our method, even with large messages
(2 MB per process).

Figure 8 presents results from the same experiments as we perform weak scaling to 4096 nodes
(64K MPI processes). These results show very similar behavior at scale. As on 1024 nodes, we
are able to significantly improve the I/O bandwidth, irrespective of the data layout in file and
particularly on messages smaller than 2 MB.

6 Conclusions and Future Work

In this paper, we have demonstrated the importance of the data movement optimizations for in-
tensive I/O operations. In particular, we developed an I/O library on top of MPI I/O based on
the two-phase I/O scheme and this takes into account the topology of the infrastructure, an ef-
ficient buffering system and the access patterns of applications. This model achieves very good
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Figure 7: One file per Pset from 1024 nodes (16 ranks/node)

performance at scale and outperforms standard approaches. For the I/O kernel of a cosmological
application, our solution was able to achieve a 15 × improvement over default parallel I/O imple-
mentation. Additionally, we demonstrated the needs to design an algorithm capable of dealing with
different data layout by overlapping communications. We demonstrate the necessity to fully exploit
the architecture characteristics in order to achieve performance at scale and meet the expectations
of large-scale simulations. As part of our future work, we plan to consider routing strategies in
our algorithm. This information could be extremely useful to reduce performance degradation due
to network contention. Another research track is to extend this aggregation method to a larger
varieties of data patterns (2D or 3D arrays for example). Finally, we will need to adapt our model
to the various expected tiers of storage and memory.
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