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ABSTRACT

Current and future supercomputers have tens of thousands of com-
pute nodes interconnected with high-dimensional networks and com-
plex network topologies for improved performance. Application
developers are required to write scalable parallel programs in or-
der to achieve high throughput on these machines. Application
performance is largely determined by efficient inter-process com-
munication. A common way to analyze and optimize performance
is through profiling parallel codes to identify communication bot-
tlenecks. However, understanding gigabytes of profile data is not a
trivial task. In this paper, we present a visual analytics system for
identifying the scalability bottlenecks and improving the communi-
cation efficiency of massively parallel applications. Visualization
methods used in this system are designed to comprehend large-scale
and varied communication patterns on thousands of nodes in com-
plex networks such as the 5D torus and the dragonfly. We also
present efficient rerouting and remapping algorithms that can be
coupled with our interactive visual analytics design for performance
optimization. We demonstrate the utility of our system with several
case studies using three benchmark applications on two leading su-
percomputers. The mapping suggestion from our system led to 38%
improvement in hop-bytes for MiniAMR application on 4,096 MPI
processes.

Keywords: Supercomputing, parallel communications, perfor-
mance analysis, visual analytics, communication visualization

Index Terms: I.3.8 [Computer Graphics]: Applications

1 INTRODUCTION

Today’s fastest supercomputers [73] have hundreds of thousands of
multi-core nodes that enable solutions to “grand challenge” problems
in science and engineering [4, 5]. Several computational science
simulations have scaled to millions of cores in order to model, at
high fidelity, the underlying complex physics in domains such as cos-
mology, climate, and material science [34, 36, 39, 45, 63]. Typically,
the application domain is decomposed over several thousand proces-
sor cores and involves a large number of communications among
the processes. The compute nodes are typically connected via a
high-bandwidth low-latency network with a specific topology [25].
Network topologies have evolved from fat-tree [52, 62] and butter-
fly [40] to high-dimensional torus [3] and high-radix dragonfly [48]
to achieve lower latency and higher bandwidth for faster commu-
nications. Modern interconnects have network bandwidths in the
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range of Gigabytes/s whereas we can achieve more than a Teraflop/s
computing speed per node [71]. Therefore, fast inter-process com-
munications between the compute nodes are necessary to achieve
maximum parallel efficiency.

Several studies [9,56,66,72] show that communication slowdown
can lead to poor scalability of parallel applications. This is not only
true for communications between the parallel processes, but also for
communications involved during input and output of data to/from
the storage [7, 51]. Hence application developers spend significant
amount of time in optimizing communication performance [9,28,80].
This task is challenging in supercomputers because of the scale of the
nodes involved, the complex network topologies, and the proprietary
routing algorithms used in these interconnects. Additionally, the
communication performance is also dependent on the underlying im-
plementation as well as on the requirements of the application [76].
Performance profiling tools [2, 49, 60, 65] are commonly used to
analyze the communication behavior. These tools collect various
communication profile data, such as the source and destination pro-
cess information involved in a communication, the message size, and
type of communication. However, the profiling data generated from
such tools is very large (order of gigabytes [1]) due to the number
of nodes and the number of communications in high performance
applications.

Visualization can help us better comprehend the complex and
massive profiling data. Several tools have been developed to visual-
ize communications in a parallel application [13, 22, 23, 43, 60, 82].
Most of these tools visualize the readily available performance pro-
file data such as communication endpoints and data size, which
helps to know the communication pattern. However, such collec-
tive information is not useful to isolate the primary communication
bottlenecks. These may arise due to several communications on
the same network links and/or long-hop communications along con-
gested links [13, 15, 55]. It is important to identify such hot spots
to reduce communication costs. Visualizing such communications
on supercomputers requires us to 1) show the behavior of a large
number of compute nodes, networks, and communications, 2) depict
high-dimensional and complex network topologies, and 3) analyze
and mitigate communication bottlenecks. However, existing tools
do not handle all these requirements.

In this paper, we present a comprehensive visual analytics system
for identifying the origin of communication bottlenecks in various
applications on diverse supercomputers. We focus on analyzing
point-to-point MPI communications [35] and deterministic rout-
ing [27] for data movement. To help a user identify congested
routes and unused links, our system effectively visualizes all the
communication paths and the network simultaneously. Additionally,
our system can suggest rerouting of communications for improved
load balance and performance based on the visualized results. Our
system also recommends improved process-to-processor mapping
(placement of MPI ranks on the physical cores) to reduce the com-
munication time among ranks that frequently communicate with
each other. These rerouting and remapping algorithms that help
improve communication efficiency are integrated into our interactive



visual analytics system. Following are our main contributions.
• A visual analytics system designed for identifying communica-

tion bottlenecks and improving communication performance.
• Scalable and flexible visual representations for communica-

tions between large numbers of compute nodes on complex
networks.

• Algorithms to suggest better routes and mapping through user
interaction with the visual analytics process.

• Several case studies to demonstrate improvement in commu-
nications of benchmark applications on two leading super-
computers. Communication bottlenecks are identified and
performance improvement has been verified experimentally.

2 RELATED WORK

Several performance analysis and visualization tools have been de-
veloped for parallel applications. Isaacs et al. [42, 43] and Gao et
al. [29] provide a comprehensive survey of performance visualiza-
tions. General-purpose performance analysis tools such as HPC-
Toolkit [2], Scalasca [30], Pajé [21], Vampir [60], CrayPat [22], and
TAU [67] provide graphical results of performance profiles. These
tools apply conventional visualizations that are usually not scalable.

State-of-the-art network interconnects enabling fast communica-
tions are quite complex, for example, the IBM Blue Gene/Q (BG/Q)
and the K computer have 5D [16] and 6D torus [6] respectively. Sev-
eral studies focus on visualizing the physical node locations in these
complex networks. Boxfish [44, 50] visualizes performance data on
3D torus networks by using a 3D mesh representation or by project-
ing the result onto a 2D plane. McCathy et al. [57] extended this
3D to 2D projection method for visualizing the 5D torus. Theisen et
al. [77] also proposed a projection method for the high-dimensional
torus network. Chen et al. [18] developed TorusVisND which can
be applied on any high-dimensional torus. They use space-filling
curve [64] and a radial layout [24] to preserve distances and con-
tinuities in the torus network as much as possible. These studies
focus more on node/network layout. Our goal is to visualize the
communication paths and detect bottlenecks.

Bhatele et al. [13] analyzed network performance in dragonfly-
based supercomputers and developed DragonView to visualize the
results. DragonView applies a radial layout and a matrix view to-
gether to show inter-group and intra-group links between the com-
pute nodes separately. Zhou et al. [83] used an adjacency matrix
to visualize communication between neighboring nodes on fat-tree
network [52, 62] based systems. We developed a generic adjacency
matrix representation to visualize the physical locations of compute
nodes on diverse networks. Sigovan et al. visualize MPI traces using
animated scatterplot [70] and I/O traces on Blue Gene/P using a
radial layout [69]. However, they do not show the communications
between processes explicitly. In contrast to the above tools, we
introduce an interactive analytics system to visualize communica-
tion routes, identify communication bottlenecks, and recommend
solutions to improve performance. Also, our system is designed to
concurrently show communication routes as well as network con-
gestion between links, while other systems only provide the latter.
Our system can also handle large-scale communications involving
several thousands of compute nodes.

Strategies to improve communication performance include im-
proved routing [8, 15, 55, 76] and topology-aware mapping [11, 74].
Bui et al. [15] developed algorithms to find better routes among
multiple shortest paths to re-balance load on BG/Q while Hoefler
et al. [38] developed heuristics to remap MPI ranks based on the
communications patterns. Bhatele et al. [12, 14] proposed a frame-
work that can find regular and irregular communication patterns in
applications and map them to 2D and 3D torus automatically. We
provide mapping suggestions to address potential communication
bottlenecks as identified by our visual analysis. This is a scalable ap-
proach to improve performance. It helps system designers to detect

Figure 1: An example of communications in a 2D mesh network.
Compute node 0 (0,0) communicates with 11 (2,3) along the green
route. Compute node 4 (1,0) communicates with 10 (2,2) along the
red route. We can reduce load on links between compute nodes 5, 6,
and 10 by rerouting the red route.

inefficient mappings and design efficient routing policies. Tuncer et
al. [79] developed a graph-based mapping algorithm for unstructured
communication patterns on non-contiguous allocations. Sudheer et
al. [74] model the mapping problem as a Quadratic Assignment Prob-
lem (QAP) with the hop-byte metric. They use graph partitioning
heuristic to solve large-scale problems. We adopt a similar approach,
however, we use adjacency matrix to partition the distance matrix.
This gave us huge improvement as compared to no improvement
with their approach of using distance matrix. Furthermore, our algo-
rithms for rerouting and remapping can be applied on user-selected
communication routes and solutions are suggested interactively.

3 VISUAL ANALYTICS PROCESS

We have developed a visual analytics system for identifying and
rectifying communication bottlenecks in massively parallel MPI
programs (where processes communicate using message passing).
These programs execute on several thousand compute nodes of su-
percomputers or HPC clusters. A compute node consists of 1 or
more CPU cores, memory and networking components. Nodes are
interconnected by a network topology such as mesh, torus, ring,
etc. Fig. 1 illustrates communication flow in a supercomputer with
2D mesh interconnect and 12 compute nodes. Each node has co-
ordinates determined by the node location and the dimensions of
the interconnect. MPI ranks/processes can be placed by the job
scheduler on the cores of a node. MPI rank numbers are used in
the application for specifying MPI communications. The ranks are
mapped onto the network using the default system mapping or a
user-defined process-to-processor mapping. We consider both map-
pings in our work. The communication path between 2 MPI ranks is
determined based on the placement of the ranks, as shown (colored
paths) in Fig. 1.

A user job (application) is allocated by the job scheduler in a free
partition of the supercomputer. There may be several links (hops)
and nodes between two MPI ranks in an application, some of which
may retard communication throughput. There are mainly two types
of MPI communications – point-to-point and collective. We focus
on point-to-point MPI communications, which are commonly found
in many applications. This implies that there are several source-
destination communication pairs. To visually identify the above
communication bottlenecks, our design requirements include:
DR1 clear display of communication routes and network congestion
DR2 identification of long and congested communication routes
DR3 identification of compute nodes with high degree
DR4 alternate route suggestion to improve the performance
DR5 scalable visualization of a large number of compute nodes,

network links, and communications
Our system is designed to satisfy these requirements. Fig. 2 shows
visualized communications using our system. The workflow of our
visual analytics process is shown in Fig. 3.

Data Collection We profile the application using performance
profiling tools such as TAU [67] and HPCTW [19, 49]. We obtain
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Figure 2: The user interface of the system, which contains three views: (a) the communication view, (b) the metric rank view, and (c) the detailed
route view. This example shows the communications obtained by running the MPI Send/Recv benchmark from the Intel MPI Benchmark suite
(IMB) [41] with 32 nodes, 16 cores on BG/Q. (a) shows an overview of communications between compute nodes. The route color is used for the
message size in this example. (b) shows ranks and values of the selected metric from a drop-down list on the top. Here the message size on
routes is selected. (c) is used for displaying the details of the routes selected in the other views.

Figure 3: The visual analytics process for understanding and improv-
ing parallel communications. The user analyzes the communications
through the three interactive steps.

Figure 4: The visualization of routes passing through the node with
high degree highlighted in Fig. 2(a). Colors are used for making each
route distinguishable. Stacked polylines show routes as well as the
load on links.

the source and destination MPI ranks for each communication and
the corresponding message size from the profiles. The physical
locations (node and core number) of the participating MPI ranks and
the physical path from the source to the destination MPI rank on
the supercomputer interconnect are obtained by using the routing
information on the interconnect. We use a simple library [54] to
obtain this information. It is difficult to collect profiling data at
the user application level when the job is running. However, if
such information can be extracted at run time, then we can easily
extend our system to show the real-time congestion view for dynamic

applications. This requires a simple script that refreshes the views
whenever new data is available.

Interactive Steps The goal of our visual analytics process is to
understand and improve massively parallel communications. Once
the user runs their applications and collects performance data, the
system can highlight the communication bottlenecks, and enables
the user to review details about the bottlenecks. Our system also
suggests alternate routing and mapping of processes to processors.
This can be used in subsequent runs to improve overall performance.

4 VISUALIZATION METHODOLOGY

Our visual analytics system consists of three views, as shown in
Fig. 2, to perform the analysis process. A user can analyze commu-
nication profiles by interactive exploration through multiple views.
The three views are: (a) communication view, (b) metric rank view,
and (c) detailed route view. Each view is designed for analyzing
different aspects of communications and at different levels of detail.
Details of properties extracted from the communications and the
views are explained in the following subsections.

4.1 Graph Properties
We model the MPI communications as communication graphs. Our
system uses graph properties, such as vertices/nodes, edges/links,
and paths/routes to visualize communications. Each view conveys
these properties with different representations.
Node A compute node is represented as a graph node. A node has
information about an MPI rank and physical coordinates of the MPI
rank in the supercomputer. The number of messages received/sent
at/to an MPI rank are represented as in- and out-degree of a node.
Route A communication flow is represented as a path from a source
to a destination. We call this a route in this paper. The route has in-
formation about the intermediate nodes used for the communication,
length of communication (number of hops), and message size.
Link Communication between a pair of compute nodes is modeled
as a graph link. The link has information about the source and



Figure 5: Interaction examples in the visual analytics process for the visualized result in Fig. 2. a) In the metric rank view, the user can see ranked
link load and selects highest ranked load with the pink rectangle. b) In the communication view, the filtered results are shown. Then, the user
selects one long route placed in the top left. c) In the detailed route view, the details of selected route in (b) are shown with outline colors encoding
the load on links. Then, the user runs the rerouting algorithm integrated in the system. d) In the detailed route view, the suggested route is shown
with a blue color. The system also shows how much the load can be reduced if the suggested route is used. e) In the communication view, the
result after applying the suggested route is shown.

destination nodes of the communication as well as the load, which
is the total size of all the messages that traverse on the link.

4.2 Communication View (Fig. 2(a))
The communication view shows an overview of the communications
(DR1, DR2, DR3), which is mainly used for Steps 1 and 2 described
in Fig. 3. A graph layout and visual encoding for each graph property
are explained in the following subsections.

4.2.1 Graph Layout
Our system places nodes by using the scalable force directed place-
ment (SFDP) [31] with communication loads as link weights. We
use graph-tool [61] for calculating the layout. This method places
the nodes that have more communications closer to each other. This
conveys an overview of communication patterns between nodes as
well as it reduces cluttered lines when the system visualizes the
routes/links (DR1).

4.2.2 Node Representation
The communication view visualizes in- and out-degrees of the nodes
using circles (DR3). The circle size represents the total degree (the
sum of in- and out-degree). The circle color represents the ratio
of in-degree to total degree. This ratio is shown using a diverging
color scheme from blue to red by default, as shown in the colormap
in Fig. 2(a). Additionally, detailed information including the MPI
rank(s), physical coordinates, and in- and out-degree, is shown when
the node is selected and hovered over with the mouse. Multiple
MPI ranks on a node are shown as a comma-separated list, as shown
in the mouseover text in Fig. 2(a). Using these representations,
the user can identify compute nodes (and MPI ranks) with heavy
communications that lead to bottlenecks as well as determine load
imbalance on the links that lead to congestion. For example, in
Fig. 2(a), the highlighted node in the center (marked as ‘Index 1’)
has a high inflow and outflow of communications. This is clearly
conveyed by the circle size.

4.2.3 Route and Link Representations
The route is visualized as a polyline between the source and des-
tination nodes. Line width represents the size of the message in a
communication. The line color shows the value of user-selected
metric using sequential colors. Lighter colors represent smaller
values and darker color represents higher values by default. The
user can select one of the following metrics: message size, length
of the route, or hop-bytes (i.e., the product of message size and
length). Hop-bytes is a commonly used metric to determine high

communication volume [12]. Fig. 2(a) uses color to show message
size (shown in the drop-down list ‘Color’).

Visualizing the total message size between a pair of nodes (load on
a link) as well as distinguishing the routes are important to identify
the location and understand the cause of communication bottleneck
(DR1, DR2). We use stacked polylines to achieve this. Fig. 4 shows
the routes passing the highlighted node in Fig. 2(a). In this figure,
we also use categorical colors to help distinguish each line. Several
routes pass through the selected node as a relay point. This implies
high inflow and outflow of data from the node. Since the compute
nodes have a limited number of network buffers, a large number of
messages passing through a node slows down all the flows through
that node. Route lines are stacked on the right hand side with respect
to the route direction from the center. Stacked order is based on the
value of the metric selected for the line color. This helps to avoid
cluttered colors between nodes and also shows total values.

Our system also provides mouse click and lasso selections for
the user to select a subset of routes. Two different types of lasso
selections are supported by applying similar methods as Elzen and
Wijk [81]. Within lasso selects nodes and routes within the drawn
lasso. Within and intersecting with lasso selects routes intersecting
with the lasso and the nodes along the selected routes as well as the
nodes and routes within the lasso. The second mode is useful to
select nodes and routes related to a specific area (e.g., we draw a
lasso around the highlighted node to show the result in Fig. 4). The
user also can see detailed information of routes such as message
size, link load, and route length by hovering the mouse over selected
routes as shown in the mouse-over text in Fig. 5(b).

4.3 Metric Rank View (Fig. 2(b))
The metric rank view shows metrics related to communication,
ranked by decreasing value. Communication bottlenecks can be
caused by long hops, large message sizes, load imbalance on links,
and nodes or any combination of these metrics. Therefore, to identify
bottlenecks (Step 1 in Fig. 3), we designed the metric rank view for
displaying length of routes, message size, and hop-bytes, as well as
load on links and in-/out-degree of nodes (DR2, DR3). The user can
select a metric of interest from the drop-down list located at the top.
As shown in Fig. 2(b), the x-axis shows the range of values of the
selected metric and the y-axis shows the ranks. Higher metric value
(and thus higher rank) implies higher possibility of bottleneck. Thus,
this view helps isolate bottlenecks. Colormaps are shared with the
other views and the color represents the value of a selected metric.
In addition, our system allows the user to change the colormap to
emphasize a specific range of values by using color pickers located



at the bottom. The metric rank view can also be used as an interface
to filter the nodes, routes, and the links to be displayed in the other
views. Fig. 5 shows an example. Nodes and routes related to the
links with highest loads are indicated with the color pink in (a) and
are displayed in the communication view (b).

4.4 Detailed Route View (Fig. 2(c))

The detailed route view, mainly used for Steps 2 and 3 of Fig. 3,
provides information about selected routes in the other views (DR2,
DR4). Fig. 5(c) shows the selected route in the communication view
in Fig. 5(b). The detailed route view conveys coordinates of compute
nodes in the physical topology by using an adjacency matrix.

4.4.1 Adjacency Matrix Representation

Each row and column of the adjacency matrix represents a graph
node. The cell color indicates whether a pair of nodes are adjacent
or not (white: not adjacent, gray: adjacent). This representation
can be used to visualize connections between compute nodes in
any high-dimensional and complex network topology. Furthermore,
the matrix can represent the coordinates of compute nodes in the
physical topology by selecting the matrix order based on the node
coordinates. An example of an adjacency matrix representation for
64 compute nodes with 5D torus network topology of BG/Q [17] is
shown in Fig. 6. Here, the order (shown on the right side) is based on
the coordinates increasing from dimension E to A. This is generally
the default order of MPI rank mapping on the physical network of
machines with mesh/torus topologies. The user can change the order
in case of a different mapping. The user can also specify a different
order of rows and columns to observe a specific communication
pattern along the dimensions. This not only helps users to identify
bottlenecks but can also be useful to system developers to determine
the impact of routing and mapping on communications.

4.4.2 Route and Link Representations

The matrix-based visualization is effective when the size of the
graph is large (e.g., more than 20 nodes), as evaluated in [32] for
various tasks. However, it is less helpful than node-link diagrams
for path finding [32]. To overcome this shortcoming, we visualize
routes with the adjacency matrix used in [68]. A single hop between
two nodes in the route can be represented as a pair of horizontal
and vertical lines in the matrix. In order to avoid occlusion in an
individual route, we draw a horizontal line from the source node
to the gray square first and then draw a vertical line from the gray
square to the target node to show the path between the source and the
target nodes. By repeating the previous step for each hop, a route can
be drawn as a collection of horizontal and vertical line pairs passing
through gray squares corresponding to intermediate nodes. A blue
square indicates that a node is a source, and a red circle indicates
that a node is a destination. In this view, the line width of the route
is constant. The user can optionally show an outline on the link that
encodes the load using sequential colors as shown in Fig. 6. This
clearly indicates the load on each link of the route. Visualizing this
route and link information together is useful for reviewing the cause
of bottlenecks. For example, when two routes of large message sizes
pass through the same link of high load, there is high possibility to
improve the performance by rerouting one of them.

5 REROUTING AND REMAPPING SUGGESTIONS

Fig. 4 shows a high-degree node that can impede the communica-
tions through that node. It is possible to reduce the load on the node
and its links by rerouting some of the network traffic. Our system can
highlight this and suggest alternative routes for the communications.
We can also suggest alternative process-to-processor mapping (refer
§3) that can alter the communication path and hence reduce the con-
gestion. Our system provides rerouting and remapping suggestions
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Figure 6: An example of matrix adjacency representation, and route
representation for 64 compute nodes connected with 5D torus. Dimen-
sions A, B, C, D, and E have sizes 2, 2, 4, 2, 2 respectively. The order
of rows and columns is based on increasing value of coordinates
starting from E and ending at A as shown in the right. The adjacency
matrix is visualized by using the gray squares to show adjacency
between a row and a column. The route from source (1,0,2,1,0) to
destination (0,1,2,0,0) is visualized using horizontal and vertical lines
passing through (1,0,2,1,0), (1,0,2,0,0), (1,1,2,0,0), and (0,1,2,0,0).

for user-selected routes as described below. These suggestions help
to find better routing/mapping in Step 3 in Fig. 3 (DR4).

5.1 Rerouting Algorithms
Our rerouting algorithm for a selected route (route can be se-
lected/filtered in the communication or metric rank view) tries to
minimize 1) the length of the selected route or 2) the highest load
(cumulative message size) on any single link. These two factors are
critical bottlenecks for achieving high performance. The user priori-
tizes one of these two criteria. Let l, l′,L,L′,δ be the length of the
selected and the alternative routes, the heaviest load on links in the
selected and alternative routes, and a tolerance value that specifies
a limit on the increase in length of the alternative route. Note that
communication on a slightly longer route via less congested links
is preferable over shorter hop communication on highly congested
links. δ is 0 by default. An alternative route is found by satisfying
one of the following conditions based on the selected criterion.

min(l′) s.t. l′ ≤ l +δ ,L′ ≤ L (1)

min(L′) s.t. l′ ≤ l +δ ,L′ ≤ L (2)

The algorithm finds all possible alternative routes with the same
source and destination nodes as the selected route under the condi-
tion that l′ ≤ l +δ and L′ ≤ L by using a breadth-first search. Then,
the algorithm selects the best alternative route satisfying Equation 1
or 2 based on the selected criterion. This algorithm quickly finds a
solution. For example, it takes around 30 ms for a route of length
10 on a graph with 2,048 vertices and 36,864 links on a 4 GHz Intel
Core i7 processor with 16 GB memory.

The above algorithm finds the optimal solution for a single route.
We developed a heuristic for multiple routes as well. Rerouting
one route affects suggestions for other routes because it changes
the load on multiple links. Our heuristic sorts the selected routes
based on the selected criterion and then uses the above algorithm
on the sorted order. This suggests better routing after the user sets



the prior criterion and clicks the button ‘Alt Routing’ placed on top
of the detailed route view (Fig. 2(c)). Fig. 5(d) shows a suggested
alternative route (in blue) for the selected route in Fig. 5(c). The
load on links in the suggested route is also displayed when the user
selects the option to show it. In addition, the total reduction in route
length and link load are shown at the top of the detailed route view.
The system also allows the user to see the communications after the
suggestions have been applied using ‘Apply’ button (refer Fig. 5(e)).

Different applications exhibit diverse communication patterns.
Thus, it may be hard to implement a generic global routing algo-
rithm that benefits all applications. Our routing suggestions rec-
ommend custom routing improvements to an application, and are
supplementary to any generic system-specific improvements.

5.2 Remapping Algorithms
Optimal process mapping is an NP-hard problem [12]. A pro-
cess mapping to minimize the total hop-bytes can be modeled as
Quadratic Assignment Problem (QAP) under the assumption that
the routes pass through one of the shortest paths between the source
and the destination nodes [74]. QAP is also a well known NP-hard
problem. Therefore, a heuristic or problem size reduction is required
to find an approximate solution. We modified the heuristic in [74]
to suggest better remapping for all processes. We also support opti-
mal and randomized algorithms for remapping selected routes. The
remapping algorithms can be applied from the detailed route view
interactively. Additionally, the suggested mapping can be output as
a text file that can be used for rerunning the analyzed application
with the recommended mapping.

5.2.1 Problem Formulation as QAP
Here we describe the problem formulation as QAP. We introduce
notations as follows. n is the number of graph nodes. A weight
matrix W = (wi j) ∈ Rn×n is a matrix of the total bytes in a com-
munication between graph nodes i and j. Note that a graph node
can have multiple MPI ranks when we run the application on mul-
tiple cores. A distance matrix D = (duv) ∈ Rn×n is a matrix of the
length of the shortest path between compute nodes u and v. φ is a
permutation representing an assignment of the graph nodes (i.e., the
MPI ranks) to the compute nodes. φ(x) represents a compute node
that is assigned to a graph node x. Minimizing the hop-bytes can be
modeled as the following QAP: find the permutation φ that satisfies
the objective function below.

min
n−1

∑
i=0

n−1

∑
j=0

wi jdφ(i)φ( j) (3)

5.2.2 Heuristic to Solve QAP
Several heuristic approaches have been developed for QAP, such
as simulated annealing, greedy randomized adaptive search, and
genetic algorithm. We use the memetic algorithm (MA) for solving
QAP because it can provide better results [10, 58]. For all the
above heuristics, the computation cost increases significantly as the
problem size increases. In our case, when the number of compute
nodes exceeds 512, the computation for remapping does not finish
within reasonable amount of time (e.g., 10 minutes). Thus, for large
scale problems, we use graph partitioning for reducing problem sizes,
and then the heuristic can solve QAP within a few minutes even
when the number of compute nodes is 4,096 (see Supplementary
Document for detailed comparison of the performance). A heuristic
using graph partitioning is described in Algorithm 1.

We partition the weight matrix W into m submatrices of size p× p
(p = n/m) using a multilevel k-way partitioning [47] implemented
in Metis [46]. For partitioning the distance matrix D, we use the
adjacency matrix A = (auv) ∈ Rn×n of the compute nodes instead
of D itself. This gave us huge improvements in solution for QAP.
We partition A into m submatrices, each of size p× p, and then
generate m submatrices of the same size from D, where each row

Algorithm 1 Remapping suggestion heuristic for all routes
Input: weight matrix W , distance matrix D, adjacency matrix A, current
permutation φ , the number of subgraphs m

1: Partition W and A into m subgraphs Ws[m] and As[m], respectively.
2: Generate m subgraphs Ds[m] from D by referring to As[m].
3: Generate a weight matrix W ′ from Ws[m] by calculating the total weights

between every pair of subgraphs.
4: Generate a distance matrix D′ from Ds[m] by calculating the average

distance between every pair of subgraphs.
5: Apply MA to solve QAP whose weight and distance matrices are W ′

and D′. This produces a permutation φ ′.
6: for each ws in Ws[m] do
7: Obtain ds allocated to ws from Ds by referring to φ ′.
8: Apply MA to solve QAP whose weight and distance matrices are ws

and ds. This produces the permutation φs.
9: Store φs in Φs[m].

10: end for
11: Generate a permutation ψ for W and D from φ ′ and Φs[m]

12: return the permutation, φ or ψ , that generates the minimum cost

and column correspond to the submatrices of A. Next, we generate
matrices W ′ and D′ whose sizes are m×m, corresponding to the
partitioned matrices W and D (lines 3–4). The value of each cell
in W ′ is the sum of the message sizes passed between two sets of
nodes corresponding to a pair of submatrices in W . Similarly, the
value of each cell in D′ is the average of the distances between two
sets of nodes corresponding to a pair of submatrices in D. Next, MA
is applied to solve QAP for W ′ and D′ (line 5). This provides an
assignment of the submatrices of W to D. MA is applied again to
decide an assignment within the assigned submatrices. The main
difference from [74] is that we use the adjacency matrix to partition
the distance matrix. This ensures that D′ represents a more preserved
distribution of distances in D. This results in lower cost and better
solution for QAP as shown in §7.2 and Supplementary Document.

5.2.3 Optimal and Randomized Algorithms for Selected
Routes

Algorithm 1 described in §5.2.2 cannot be applied selectively on
specific routes. This implies that extra computation time is incurred
even when the user is interested only in specific routes or nodes.
Also, it cannot guarantee that specific routes of interest will be better
mapped. Therefore, our system provides optimal and randomized
algorithms for remapping suggestions for selected routes.

The optimal algorithm evaluates the cost of each possible remap-
ping and selects the best one. Let n be the total number of the
compute nodes and m be the number of source and destination nodes
included in the selected routes. There are nPm alternate mappings
for the selected nodes. This leads to a combinatorial increase in
the number of calculations as n or m increases. Our system also
provides a randomized approach for remapping selected routes to
solve cases, where the number of selected routes is large, within a
reasonable amount of time. Randomly generated permutations are
repeatedly selected and their costs are calculated. The minimum
cost permutation out of each trial is used. Performance evaluation
of each algorithm is shown in Supplementary Document. Both the
optimal and the randomized algorithms can also be used to refine
the results obtained by applying Algorithm 1 for remapping all the
routes. This coupling helps to improve the overall communication
performance as well as the data transfer time along specific routes.

6 SCALABLE VISUALIZATION METHODS

Extreme scale leadership-class systems have several thousand nodes.
This impairs visualization because standard graph visualization re-
sults in clutter and we would have too few pixels to show commu-
nications in a standard matrix-based visualization. To overcome
this, our system provides scalable visualization methods based on



(a) aggregate graph (b) unaggregated graph

Figure 7: (a) aggregate and (b) unaggregated graphs of communi-
cations visualized in the communication view. The communications
are obtained by running MiniMD benchmark [37] on 2,048 nodes (1
core/node) on BG/Q [17]. The nodes that have the same A, B, C
coordinates are aggregated in (a). In this case, the lengths of the
D and E dimensions are 16 and 2. Therefore, every 32 contiguous
nodes are aggregated into one node. One cluster, containing self
communication loops with large message sizes, is selected with the
lasso drawn in red. The nodes and routes within the selected area in
(a) are shown with higher saturation colors in (b).

aggregation and folding for the communication view and the detailed
route view (DR5).

6.1 Node Aggregation for the Communication View
Graph visualization of communications between compute nodes
can easily generate highly cluttered results due to various factors.
First, every node is within a few hops from several nodes due to low-
diameter networks with high bisection bandwidths. Also, the number
of communication routes is relatively large when compared to the
number of nodes (e.g., running MiniAMR [37] with 2,048 nodes
produces over 60,000 different communication routes). To abstract
complex communications, we apply node aggregation based on their
physical coordinates. A visualization of communications between
2,048 nodes on 5D torus with node aggregation is shown in Fig. 7(a).
Our system aggregates nodes that have the same coordinate values
in specific user selected dimensions, such as A, B, and C dimensions
in this figure. The message sizes on aggregate routes are the sum
of the individual message sizes between the aggregated nodes. The
graph layout is calculated using the load on aggregated links. Also,
an aggregate node may include communication routes among the
nodes that have been aggregated together. To show this information
without adding clutter, our system draws a circle around aggregated
nodes that have such internal communications.

Our system also allows the user to select one or more aggregate
nodes or aggregate routes to visualize without aggregation to enable
the user to review details of the selected area of interest. Users can
select by using mouse click or drawing a lasso around the elements
of interest. Fig. 7(b) shows the visualized result of the selected
elements in Fig. 7(a). The layout for the unaggregated graph is
calculated by using the node positions in the aggregate graph as
input to the pin and groups parameters of SFDP. These parameters
place some restrictions on the placements and groupings of nodes
which allows users to keep the mental map between the views as
consistent as possible.

6.2 Scalable Visualization for the Detailed Route View
A critical problem with the matrix representation is its scalability.
For example, if the user wants to visualize communications between
4,096 nodes, the matrix representation uses 4,096 rows and columns.
At this scale, it is hard to distinguish each cell and route due to
limitations in screen space and resolution. The matrix order in

the detailed route view (shown in Fig. 6) stores spatial coordinates
hierarchically according to dimension order. This ordering plays an
important role to achieve scalable methods as described below.

6.2.1 Resolution Reduction
Our first approach is to reduce the resolution of the matrix. The
visualized image should convey a summary of communications even
at reduced resolution [26]. To achieve this, we use the spatial order
of the mapping rule. For example, with the 5D torus network, we
use the dimension mapping described in Fig. 6. Here, we used the
default process-to-processor mapping order of the supercomputer to
determine the matrix order in the detailed route view. However, the
number of dimensions and the matrix order can be changed based
on the user’s environment. Our system detects the number of pixels
available for a single cell based on the window size, matrix size, and
zooming scale. When the number of pixels is lower than a threshold,
our system reduces the resolution of the matrix by recursively aggre-
gating rows and columns from lower dimensions. If the aggregated
cell includes an adjacent pair of nodes, the source, or the destination
node (a gray square, blue square, or red circle), a circle/square of
corresponding color is placed on the cell. The routes are represented
using the same method described in §4.4.2. Visualized results us-
ing the original resolution and a reduced resolution for the selected
routes in Fig. 7(b) are shown in Fig. 8(a) and (b).

6.2.2 Magnifying Lens
With the above method, the resolution is reduced in all regions with-
out considering user’s requirement. Our system provides magnifying
lens to see a specific region at higher resolution. The magnifying
lens shows zoomed results within the selected square. The resolution
reduction algorithm is also applied on the magnifying lens when the
number of pixels available for a cell in the magnified region is lower
than the threshold. An example visualization is shown in Fig. 8(c).

6.2.3 Folding Unrelated Regions
In the case of route between two nodes that are far from each other
in the detailed route view, the user can hardly see every node on the
route in one image. Fig. 9(a) shows an example. To address this issue
that cannot be solved with resolution reduction and magnifying lens,
our system supports folding regions unrelated to the routes. The user
first selects a level in the matrix order, which partitions the matrix
into blocks. A block is folded if no displayed route passes through
it. Modern supercomputers are designed to have small diameter
interconnects. Therefore, the communication routes often use a few
tens of nodes. For example, the maximum diameter of BG/Q, which
has 49,152 nodes, is 27. This indicates that most routes pass through
less than 27 nodes. Thus, this method can work well for most routes
when the user wants to display only a few at a time.

The above methods (resolution reduction, magnifying lens, and
folding) can be used together based on the user’s requirements.

7 CASE STUDIES

We present analysis results of visualizing communication profile
data obtained from running various applications on an IBM Blue
Gene/Q [17, 33] system, Mira [59], and an Intel Knights Land-
ing [71] based Cray XC40 [20] supercomputer, Theta [78], at the
Argonne National Laboratory. Mira has a 5D torus [16] network
topology whereas Theta has a dragonfly topology [48]. We used
low-overhead profiling tools such as TAU [67] and HPCTW [49] to
collect communication profile data which was maximum of 4 GB.
Processed data from these are available online1. We provide results
for a subset of experiments due to space limitation. We demonstrate
how the communication bottlenecks are identified and a better rout-
ing/mapping is found by using our visual analytics system which

1https://github.com/takanori-fujiwara/par-comm-data

https://github.com/takanori-fujiwara/par-comm-data


(a) original result (b) with resolution reduction (c) with resolution reduction and magnifying lens

Figure 8: The comparison of visualized results of the communication routes selected in Fig. 7(a). Since the communications visualized in Fig. 7
use 2,048 nodes, each matrix cell has less than 1 pixel. In (b), the D and E dimensions are aggregated from (a) to use at least one pixel for each
cell. In this example, the D and E dimensions have length of 16 and 2 so that each 32 cells are aggregated to a single cell. In (c), the magnifying
lens in the center shows a higher resolution result.

(a) with resolution reduction (b) with folding unrelated regions

Figure 9: The comparison of a communication route visualized (a)
without and (b) with folding unrelated regions. Resolution reduction
is applied in (a). Even with magnifying lens or zooming in a specific
region, the user will not be able to see the details of the route with
high resolution since it spans across a wide region. After folding
unrelated regions, the user can see the route in detail as indicated
with an orange square (b).

was developed using C++ and Python. We were able to visualize
a huge number of communications (more than 60,000) on a large
number of nodes in less than 5 seconds.

7.1 Molecular Dynamics Simulation
We analyze the communications of MiniMD which is a molecular
dynamics application from the Mantevo Benchmarks [37]. We ran
MiniMD on 32–8,192 nodes on BG/Q with 1–16 MPI ranks/node.
We present an analysis example of visualization of a 0.5M atom
simulation on 2,048 nodes and 1 rank/node with node aggregation,
shown in Fig. 7(a). First we observe that there are several disjoint
node clusters with minimum cross-communication between them.
This indicates that many communications are confined to subsets of
the available nodes. This is especially true for the communications
in the cluster enclosed by the red lasso. Here, two of the aggregate
nodes have many communications among their aggregated nodes
with large message sizes (indicated by the dark green self-loops).
Therefore, we select this cluster with the lasso for detailed analysis.
We then inspect the selected communications without aggregation,
as shown in Fig. 7(b). However, too many routes impede our analysis.
Therefore, we investigate using the metric rank view, by showing
only the communications that cause the top 5% highest load and thus

may cause network congestion. The results are shown in Fig. 10.
In Fig. 10(a), we see that many of these communications have

long lengths and large message sizes and thus can lead to commu-
nication bottlenecks. Additionally, these communications occur in
three distinct physical locations (Fig. 10(b)). We fold unrelated re-
gions (refer §6.2.3) to see detailed routes in each location (Fig. 10(c)).
Here, we note that most of the communications are along few links.
This indicates that we can reduce the maximum link load by com-
municating along under-utilized neighboring links. We query the
system for rerouting suggestions for these multiple routes, with the
priority criterion of maximum load on links (refer §5.1). The sug-
gested routes are shown in blue (Fig. 10(d)). We can see that the
suggested routing spreads the traffic and better utilizes the available
links. The system recommends that this routing can reduce the max-
imum load on 19 out of 73 routes. The expected average reduction
in load on 19 routes is 18.4% and the maximum reduction is 50.1%.
In addition, the system also shows potential reduction of maximum
load (data size on link) by 88 MB. This is expected to vastly im-
prove communication performance. Our rerouting suggestion also
predicted an average reduction of maximum load on the links of up
to 33.23% for 1–8M atom simulations on Mira with 4–32K ranks.

7.2 Adaptive Mesh Refinement (AMR)
Next, we visualize the communications in MiniAMR from the Man-
tevo Benchmarks [37]. It is a mini-application to study AMR codes
at scale. It does 3D stencil calculation and has an irregular commu-
nication pattern with adaptation. We ran MiniAMR on 32–4,096
BG/Q nodes. The visualization for 2,048 nodes with 2 ranks/node
using node aggregation is shown in Fig. 11(a). This has about 63,406
communications. From Fig. 11(a), we can see that large messages
are sent within aggregated nodes. Compared to the results described
in Fig. 7(a), there are no clearly disjoint clusters and there are more
communication routes between aggregate nodes. Thus there are
possibly many long routes, that can result in high total hop-bytes.
Therefore, we next analyze the top 10% of routes with the highest
hop-bytes in detail. The visualization is described in Fig. 11(b). By
visualizing both the lengths (using color) and message sizes (using
width), we can see that many of the routes with the largest hop-bytes
tend to be long routes with small message sizes. This implies that we
can reduce the total hop-bytes by remapping the MPI ranks to reduce
the lengths of the communication routes. We use our heuristic for
remapping all ranks as described in §5.2.2. Our experimental results
on Mira showed 38.08% reduction in hop-bytes using the suggested
mapping. This shows the usefulness of our system. We also found



(a) the communication view (b) the detailed route view before
folding unrelated regions

(c) the detailed route view after fold-
ing unrelated regions

(d) routes suggested by our rerout-
ing algorithm

Figure 10: Filtered results from Fig. 7(b). Communications along the links in the top 5% when ranked by highest load, are selected in the metric
rank view. We observe in (a) that most of these communication routes have long lengths and thus may cause bottlenecks. In (b), we see that
these communications occur in three different physical locations (indicated with arrows). An orange square in the middle shows a visualized result
using magnifying lens. To see a detailed view of these locations, we apply folding to unrelated regions in (c). Note that many routes use the same
congested links. In (d), the system suggests alternative routes (indicated with arrows) through unused links in (c).

(a) all routes colored based on
their message sizes

(b) filtered routes colored based
on their length

Figure 11: Communications in MiniAMR. (a) communications are
visualized using node aggregation. (b) shows top 10% routes with
highest hop-bytes, selected in the metric rank view. Color represents
route length. Many routes have large hop-bytes due to long hops.
Thus, remapping can reduce communication time.

that there was no improvement when we used the approach in [74]
instead of an adjacency matrix for partitioning the distance matrix
(see Supplementary Document for other results).

7.3 Evaluation of Algorithms for MPI I/O
MPI I/O is used for parallel I/O from several MPI processes [75].
We demonstrate the usage of our system to evaluate optimized I/O
developed in [55]. We compare the communications in default and
optimized I/O on BG/Q, as shown in Fig. 12. We can see that
the optimized approach (Fig. 12(b)) does better load balancing by
using many unused network links in Fig. 12(a). This also shows
inefficiency in the default routing. We also found from the metric
rank view that the maximum load on link was reduced by 9% and
the total route length was reduced by 8% in the optimized approach.
This demonstrates the efficacy of our system in comparing various
algorithms and routing policies.

7.4 Communications in the Dragonfly
In this case study, we analyze communications on Theta, which has
a hierarchical dragonfly topology [20, 48]. Four compute nodes are
packaged in one compute blade. Sets of sixteen blades are packed in
a chassis and sets of three chassis are mounted in a cabinet. A group
comprises of two cabinets. The compute nodes, blades, chassis, and
cabinets have all-to-all connections at each level. Our system is
generic enough to comprehend this type of network by using a differ-

(a) default routing on BG/Q (b) with optimizations in [55]

Figure 12: Matrix MPI I/O communications with 512 compute nodes
using 16 ranks/node. (a) Network traffic is localized in two regions.
Approach in (b) tries to use many under-utilized links.

ent order in the adjacency matrix representation used in the detailed
rank view. The matrix order is based on the network tier, starting
from the compute node level to the group level. We ran MiniMD on
32 to 1,024 nodes of Theta with 1 MPI rank/node. Visualizations
of communication profiles for weak-scaling simulations with 0.3M,
0.7M, and 1.3M atoms on 128, 256, and 512 nodes respectively are
shown in Fig. 13. In Fig. 13(a), we can see that all communications
are in one cabinet (indicated by an orange square), and thus are likely
to be efficient. On the other hand, in Fig. 13(b) and (c), our job
was allocated in different chassis and groups. We note inter-group
communications which may result in inter-job interference due to
communications through other nodes. This can negatively affect
application performance. This is more prominent in the case of 512
nodes. Thus our system enables system administrators to view the
effect of job allocations on application communications.

8 DISCUSSION AND LIMITATIONS

We use node-link diagrams because they can visualize communi-
cations on compute nodes connected using any topology. This is
helpful for developers who execute their applications on different
supercomputers with diverse topologies. Moreover, our robust node-
link diagrams can easily convey an overall communication pattern
while focusing on the communication volume between compute
nodes. Additionally, we used matrix-based representation to convey
detailed communication patterns, unused network links, and the
effect of process mappings and job allocations in the context of the
underlying physical network. This is useful for system designers and



(a) 128 nodes (b) 256 nodes (c) 512 nodes

Figure 13: Communications in MiniMD on Theta, which has a dragonfly topology [20,48]. Each matrix row and column represents a blade hosting
four compute nodes by applying resolution reduction. Regions indicated by red, orange, and blue squares in (a) correspond to networks within a
chassis, a cabinet, and a group. In (a), every communication passes through blades within a cabinet. In (b), communications cross three groups.
Similar patterns can be also seen in (c).

system administrators. We considered other visual representations
such as projections and radial layout before using the matrix-based
representation. Visualization based on physical networks [44, 50]
may show above information more intuitively when the number of
dimensions is equal to or less than three and the topology is a regular
mesh/torus. However, modern interconnects, as used in this work,
have complex 5D torus or dragonfly topology. Our generic repre-
sentation also works for other network topologies. While node-link
diagrams with radial layouts [13, 18] can show physical locations by
using node ordering, they may suffer from cluttered lines and are
unable to highlight the unused network links.

We used our own library to find the communication paths based
on the system routing. Any off-the-shelf library that provides this
information can also be integrated with our system. We used
HPCTW [49] and TAU [67] to profile; these have low overhead
and are installed on both Mira and Theta. However, any profiling
tool that provides the communication source, destination, and data
size information can be used. One of the strong contributions of
our work is recommending new communication routes along unused
network links to avoid congestion, as shown in §7.1. System design-
ers can use this to detect inefficient routing policies. Moreover, the
visual analysis results of our system are not only useful for detecting
communication bottlenecks but can also be used to visually evaluate
different routing and mapping algorithms, as demonstrated in §7.3.
Our system is also capable of visualizing MPI collective communi-
cations using the knowledge of the collective algorithm being used.
We plan to incorporate this in future.

Next, we discuss the limitations of this work. In the communi-
cation view, line widths of links and routes are set to not exceed
diameters of nodes. This may render very small message sizes less
visible. However, in this work we focus on large message sizes
which are potential causes of congestion. Also, if the user wants to
distinguish routes in a link with different colors as shown in Fig. 4,
the number of stacked routes in a link should be seven or less [53].
The communications are clearly visible for a few hundred nodes
(see Supplementary Document). We used aggregate graph to over-
come this limitation. However, node aggregation hides the detailed
communications within aggregated nodes. Therefore, we support
filtering and interactions described in §4 and §6. The detailed route
view also has similar limitations. The graph size should be a few
hundreds or less of nodes to show route/link information clearly
(see Supplementary Document). The resolution reduction to give
more scalability cannot show communications within a cell reduced
resolution. In addition, the detailed route view suffers from clutter
when the user tries to show many routes as shown in Fig. 12. In such
cases, filtering, zooming, and analyzing together with the communi-

cation view are helpful. Another limitation is the intuitiveness of the
route matrix representation; although user feedback suggests that
this representation is effective in finding paths [68], it requires them
to first learn how to interpret the visualized results.

9 CONCLUSIONS

We presented a comprehensive visual analytics process and system
for optimizing massively parallel communications in supercomput-
ers. The visualization methods used in our system are designed
to comprehend large-scale and varied communication patterns on
thousands of nodes with complex interconnects. The system detects
hot spots in communications, allows users to select congested routes,
and suggests alternative routes to reduce the maximum load on a
link. We also introduce rerouting and remapping suggestions that
can be coupled with the visualization. This is useful for application
developers and system designers. Our system also enables system
administrators to view effects of job allocations on communications.

Application developers can analyze potential communication bot-
tlenecks on future supercomputers using our system. Our visual
analysis also enables system designers to evaluate different network
topologies for upcoming supercomputers. We visualized point-to-
point MPI communications on BG/Q and Cray XC40 and MPI I/O
communications on BG/Q. The case studies demonstrate the efficacy
of the system to find bottlenecks and to improve the communication
throughput. We obtained 38% improvement in hop-bytes following
our system’s suggestion for MiniAMR on BG/Q. In future, we will
visualize tracing data which reveals temporal communication pat-
terns. We also plan to evaluate various communication algorithms
with more applications and understand the resulting performance
improvements. Further, we would like to extend our system to
understand communications in multiple applications on a shared
interconnect. This will help the system administrators to design
better job placement strategies.
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