13 research outputs found

    Quaternary climate modulation of Pb isotopes in the deep Indian Ocean linked to the Himalayan chemical weathering

    Get PDF
    We use reductive sediment leaching to extract lead (Pb) from the authigenic fraction of marine sediments and reconstruct the Pb isotope evolution of the deep central Indian Ocean over the past 250 thousand years at ∼3 kyr resolution. Temporal variations define a binary mixing line that is consistent with data from ferromanganese nodules and which records mixing between two well-defined endmembers through time. The unradiogenic endmember appears to represent a widely-distributed Pb source, from mid-ocean ridges or possibly volcanic aerosols, while the radiogenic endmember coincides with the composition of Ganges–Brahmaputra river sediments that are indicative of the Himalayan weathering inputs. Glacial–interglacial Pb isotope variations are striking and can be explained by an enhancement of Himalayan contributions by two to three times during interglacial periods, indicating that climate modulates the supply of dissolved elements to the ocean. While these changes could accurately record variations in the continental chemical weathering flux in response to warmer and wetter conditions during interglacials, the relative proportions of Pb derived from the Ganges and Brahmaputra appear to have been constant through time. This observation may point towards particulate-dissolved interactions in the estuary or pro-delta as a buffer of short timescale variability in the composition (and potentially flux) of the fluvial inputs. In addition, the changes are recorded at 3800 m water depth, and with the lack of deep water formation in the Bay of Bengal, a mechanism to transfer such a signature into the deep ocean could either be reversible scavenging of dissolved Pb inputs and/or boundary exchange on the deep sea fan. Unless the mechanism transferring the Pb isotope signature into the deep ocean was itself highly sensitive to global climate cycles, and with the absence of a precessional signal in our Pb isotope data, we suggest that the Indian climate and its influence on basin-scale chemical weathering were strongly modulated by glacial versus interglacial boundary conditions

    δ¹³C depleted oceans before the Termination 2: More nutrient-rich deep-water formation or light-carbon transfer?

    No full text
    249-258Carbon-isotopes (δ¹³C) composition of benthic foraminifera has been extensively used to understand the link between deep-water circulation and climate. Equatorial Indian Ocean δ¹³C records of planktic- and benthic-foraminifera together show an unexplained shift in the long-term mean oceanic- δ¹³C around the penultimate glacial termination (T2: 132 ka). The time-series planktic- and benthic- species δ¹³C records exhibit two distinct mean- δ¹³C levels. The low mean- δ¹³C characterises the pre-T2 period (250 ka – 132 ka), while the post-T2 (~95 ka – Present) period records high mean- δ¹³C, generating a one-time shift of ~0.4 ‰ within the last ~250 kyr time-period. This shift is a result of consistently higher- δ¹³C in post-T2 glacial (and interglacial) periods as compared to the pre-T2 glacial (and interglacial) periods, and begins around the T2 (~132 ka), lasts until ~95 ka, and sustained through the T1. The normally observed glacial-interglacial δ¹³C variations of ~0.3 ‰ occur as secondary fluctuations around the long-term primary mean-levels in the Indian Ocean, as well as in other oceans. The T2- δ¹³C shift appears to be an inherent feature of the world oceans although with certain timing offsets. Therefore, it should represent a fundamental change in deep-ocean circulation (nutrient) dynamics. But, the leading hypotheses of circulation-driven oceanic distribution of δ¹³C fail to explain the observed mean- δ¹³C shift. Therefore it is proposed that, in addition to changes in deep-water circulation, the oceans before T2 were characterised by significantly lower- δ¹³C than after. Such low- δ¹³C mean-ocean during the pre-T2 period might have been the result of significantly increased transfer of terrestrial light-carbon to the ocean reservoir due to changes in global wind patterns

    Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Get PDF
    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, via NADW temperature, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during Marine Isotope Stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks linked to the growth of Northern Hemisphere ice sheets, carbon cycling in the glacial ocean was more strongly linked to Southern Ocean processes

    Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Get PDF
    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, via NADW temperature, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during Marine Isotope Stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks linked to the growth of Northern Hemisphere ice sheets, carbon cycling in the glacial ocean was more strongly linked to Southern Ocean processes

    (Table 1) Compositional variation with depth in a nodule of sediment sample RVG-10D

    No full text
    A detailed study of a nodule from the Somali Basin dated by 230Thexcess was correlated with the paleoceanographic events recorded in Site 236 (Leg 24) Deep Sea Drilling Project (DSDP) cores. Tentative indications are that the phase of nodule accretion starting with the development of pillar structure at a depth of 20 mm in the nodule around 13 Ma coincides with increased Antarctic Bottom Water (AABW) flow and an elevated calciumcarbonate compensation depth (CCD). The Late Miocene lowering of the CCD is represented by the mottled zones between 8 and 18 mm in the nodule is characterised by an abundant silicate component (>20%) of aeolian origin. The Miocene/Pliocene boundary (5 Ma) occurs at a depth of about 8 mm and is represented by the development of pillar structure and a minimum of aeolian dust (10.3%). The increased biological productivity of the Somali surface water since the Middle Miocene is demonstrated by the increasing Corg content of the nodule (from 0.11 to 0.19%) towards its surface

    SST time-series for Eastern Arabian Sea recostructed from paired measurement of δ¹⁸O and Mg/Ca of planktonic foraminifera

    No full text
    The deglacial transition from the last glacial maximum at ∼20 kiloyears before present (ka) to the Holocene (11.7 ka to Present) was interrupted by millennial-scale cold reversals, viz., Antarctic Cold Reversal (∼14.5–12.8 ka) and Greenland Younger Dryas (∼12.8–11.8 ka) which had different timings and extent of cooling in each hemisphere. The cause of this synchronously initiated, but different hemispheric cooling during these cold reversals (Antarctic Cold Reversal ∼3∘C and Younger Dryas ∼10∘C) is elusive because CO2, the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, the driver of antiphased bipolar climate response, both fail to explain this asymmetry. We use centennial-resolution records of the local surface water 18O of the Eastern Arabian Sea, which constitutes a proxy for the precipitation associated with the Indian Summer Monsoon, and other tropical precipitation records to deduce the role of tropical forcing in the polar cold reversals. We hypothesize a mechanism for tropical forcing, via the Indian Summer Monsoons, of the polar cold reversals by migration of the Inter-Tropical Convergence Zone and the associated cross-equatorial heat transport

    Indian summer monsoon forcing on the deglacial polar cold reversals

    No full text
    The deglacial transition from the last glacial maximum at ∼20 kiloyears before present (ka) to the Holocene (11.7 ka to Present) was interrupted by millennial-scale cold reversals, viz., Antarctic Cold Reversal (∼14.5–12.8 ka) and Greenland Younger Dryas (∼12.8–11.8 ka) which had different timings and extent of cooling in each hemisphere. The cause of this synchronously initiated, but different hemispheric cooling during these cold reversals (Antarctic Cold Reversal ∼3∘C and Younger Dryas ∼10∘C) is elusive because CO2, the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, the driver of antiphased bipolar climate response, both fail to explain this asymmetry. We use centennial-resolution records of the local surface water δ18O of the Eastern Arabian Sea, which constitutes a proxy for the precipitation associated with the Indian Summer Monsoon, and other tropical precipitation records to deduce the role of tropical forcing in the polar cold reversals. We hypothesize a mechanism for tropical forcing, via the Indian Summer Monsoons, of the polar cold reversals by migration of the Inter-Tropical Convergence Zone and the associated cross-equatorial heat transport
    corecore