4,565 research outputs found
Top mass dependent alpha_s^3 corrections to B-meson mixing in the MSSM
We compute the top mass dependent NLO strong interaction matching conditions
to the Delta F=2 effective Hamiltonian in the general MSSM. We study the
relevance of such corrections, comparing its size with that of previously known
NLO corrections in the limit mt->0, in scenarios with degeneracy, alignment,
and hierarchical squarks. We find that, while these corrections are generally
small, there are regions in the parameter space where the contributions to the
Wilson coefficients C1 and C4 could partially overcome the expected suppression
m_t/M_SUSY.Comment: 15 pages, 6 figure
Updated NNLO QCD predictions for the weak radiative B-meson decays
Weak radiative decays of the B mesons belong to the most important flavor
changing processes that provide constraints on physics at the TeV scale. In the
derivation of such constraints, accurate standard model predictions for the
inclusive branching ratios play a crucial role. In the current Letter we
present an update of these predictions, incorporating all our results for the
O(alpha_s^2) and lower-order perturbative corrections that have been calculated
after 2006. New estimates of nonperturbative effects are taken into account,
too. For the CP- and isospin-averaged branching ratios, we find B_{s gamma} =
(3.36 +_ 0.23) * 10^-4 and B_{d gamma} = 1.73^{+0.12}_{-0.22} * 10^-5, for
E_gamma > 1.6GeV. Both results remain in agreement with the current
experimental averages. Normalizing their sum to the inclusive semileptonic
branching ratio, we obtain R_gamma = ( B_{s gamma} + B_{d gamma})/B_{c l nu} =
(3.31 +_ 0.22) * 10^-3. A new bound from B_{s gamma} on the charged Higgs boson
mass in the two-Higgs-doublet-model II reads M_{H^+} > 480 GeV at 95%C.L.Comment: journal version, 5 pages, no figure
Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost
This study aimed to develop new techniques for the remediation of contaminated soils based on the applicationof zero-valent iron nanoparticles (nZVI) and bioremediation with compost from organic wastesand a mixed technique of both. An assessment of the effectiveness of remediation in two soils contaminatedwith hydrocarbons and heavy metals was carried out, with the aim of looking for positive synergiesby combining the two techniques, and demonstrating their viability on an industrial scale. The applicationof nZVI for in situ immobilization of As and Cr in two different soils (Soil I from a contaminatedindustrial site and Soil II, contaminated artificially) showed a decrease in the concentration of As in SoilI and Soil II, as well as a decrease in Cr concentration for Soil I and Soil II in the leachate of both soils.The addition of compost and nanoparticles under uncontrolled environmental conditions in biopiles wasable to produce a decrease in the concentration of aliphatic hydrocarbons of up to 60% in the two soils.Especially, degradation and transformation of longer chains occurred. A significant reduction of ecotoxicitywas observed throughout the process in the biopile of soil II, not reaching the LC50 even with 100%of the sample after the treatment, in both earthworm and seeds growth tests
Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost
This study aimed to develop new techniques for the remediation of contaminated soils based on the application of zero-valent iron nanoparticles (nZVI) and bioremediation with compost from organic wastes and a mixed technique of both. An assessment of the effectiveness of remediation in two soils contaminated with hydrocarbons and heavy metals was carried out, with the aim of looking for positive synergies by combining the two techniques, and demonstrating their viability on an industrial scale. The application of nZVI for in situ immobilization of As and Cr in two different soils (Soil I from a contaminated industrial site and Soil II, contaminated artificially) showed a decrease in the concentration of As in Soil I and Soil II, as well as a decrease in Cr concentration for Soil I and Soil II in the leachate of both soils. The addition of compost and nanoparticles under uncontrolled environmental conditions in biopiles was able to produce a decrease in the concentration of aliphatic hydrocarbons of up to 60% in the two soils. Especially, degradation and transformation of longer chains occurred. A significant reduction of ecotoxicity was observed throughout the process in the biopile of soil II, not reaching the LC50 even with 100% of the sample after the treatment, in both earthworm and seeds growth tests. [All rights reserved Elsevier]
Implications from clean observables for the binned analysis of B -> K*ll at large recoil
We perform a frequentist analysis of q^2-dependent B-> K*(->Kpi)ll angular
observables at large recoil, aiming at bridging the gap between current
theoretical analyses and the actual experimental measurements. We focus on the
most appropriate set of observables to measure and on the role of the
q^2-binning. We highlight the importance of the observables P_i exhibiting a
limited sensitivity to soft form factors for the search for New Physics
contributions. We compute predictions for these binned observables in the
Standard Model, and we compare them with their experimental determination
extracted from recent LHCb data. Analyzing b->s and b->sll transitions within
four different New Physics scenarios, we identify several New Physics benchmark
points which can be discriminated through the measurement of P_i observables
with a fine q^2-binning. We emphasise the importance (and risks) of using
observables with (un)suppressed dependence on soft form factors for the search
of New Physics, which we illustrate by the different size of hadronic
uncertainties attached to two related observables (P_1 and S_3). We illustrate
how the q^2-dependent angular observables measured in several bins can help to
unravel New Physics contributions to B-> K*(->Kpi)ll, and show the
extraordinary constraining power that the clean observables will have in the
near future. We provide semi-numerical expressions for these observables as
functions of the relevant Wilson coefficients at the low scale.Comment: 50 pages, 21 figures. Improved form factor analysis, conclusions
unchanged. Plots with full resolution. Version published in JHE
Complete Anatomy of B -> K*ll and its angular distribution
We present a complete and optimal set of observables for the exclusive 4-body
B meson decay B -> K*(->K pi) l+l- in the low dilepton mass region, that
contains a maximal number of clean observables. This basis of observables is
built in a systematic way. We show that all the previously defined observables
and any observable that one can construct, can be expressed as a function of
this basis. This set of observables contains all the information that can be
extracted from the angular distribution in the cleanest possible way. We
provide explicit expressions for the full and the uniangular distributions in
terms of this basis. The conclusions presented here can be easily extended to
the large-q^2 region. We study the sensitivity of the observables to
right-handed currents and scalars. Finally, we present for the first time all
the symmetries of the full distribution including massive terms and scalar
contributions.Comment: 37 pages, 12 Figures. Corrected typo in Eqs. (29) and (44). Results
and conclusions unchange
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Belle II Technical Design Report
The Belle detector at the KEKB electron-positron collider has collected
almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an
upgrade of KEKB is under construction, to increase the luminosity by two orders
of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2
/s luminosity. To exploit the increased luminosity, an upgrade of the Belle
detector has been proposed. A new international collaboration Belle-II, is
being formed. The Technical Design Report presents physics motivation, basic
methods of the accelerator upgrade, as well as key improvements of the
detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
