1,785 research outputs found

    Supercurrent and Andreev bound state dynamics in superconducting quantum point contacts under microwave irradiation

    Get PDF
    We present here an extensive theoretical analysis of the supercurrent of a superconducting point contact of arbitrary transparency in the presence of a microwave field. Our study is mainly based on two different approaches: a two-level model that describes the dynamics of the Andreev bound states in these systems and a fully microscopic method based on the Keldysh-Green function technique. This combination provides both a deep insight into the physics of irradiated Josephson junctions and quantitative predictions for arbitrary range of parameters. The main predictions of our analysis are: (i) for weak fields and low temperatures, the microwaves can induce transitions between the Andreev states leading to a large suppression of the supercurrent at certain values of the phase, (ii) at strong fields, the current-phase relation is strongly distorted and the corresponding critical current does not follow a simple Bessel-function-like behavior, and (iii) at finite temperature, the microwave field can enhance the critical current by means of transitions connecting the continuum of states outside the gap region and the Andreev states inside the gap. Our study is of relevance for a large variety of superconducting weak links as well as for the proposals of using the Andreev bound states of a point contact for quantum computing applications.Comment: 16 pages, 11 figures, submitted to Phys. Rev.

    Reconstructing solar magnetic fields from historical observations : IV. Testing the reconstruction method.

    Get PDF
    Abstract Aims. The evolution of the photospheric magnetic field has only been regularly observed since the 1970s. The absence of earlier observations severely limits our ability to understand the long-term evolution of solar magnetic fields, especially the polar fields that are important drivers of space weather. Here, we test the possibility to reconstruct the large-scale solar magnetic fields from Ca II K line observations and sunspot magnetic field observations, and to create synoptic maps of the photospheric magnetic field for times before modern-time magnetographic observations. Methods. We reconstructed active regions from Ca II K line synoptic maps and assigned them magnetic polarities using sunspot magnetic field observations. We used the reconstructed active regions as input in a surface flux transport simulation to produce synoptic maps of the photospheric magnetic field. We compared the simulated field with the observed field in 1975−1985 in order to test and validate our method. Results. The reconstruction very accurately reproduces the long-term evolution of the large-scale field, including the poleward flux surges and the strength of polar fields. The reconstruction has slightly less emerging flux because a few weak active regions are missing, but it includes the large active regions that are the most important for the large-scale evolution of the field. Although our reconstruction method is very robust, individual reconstructed active regions may be slightly inaccurate in terms of area, total flux, or polarity, which leads to some uncertainty in the simulation. However, due to the randomness of these inaccuracies and the lack of long-term memory in the simulation, these problems do not significantly affect the long-term evolution of the large-scale field

    CLEANING AND PREVENTION OF INORGANIC DEPOSITS IN PLATE HEAT EXCHANGERS USING PULSATING CURRENT

    Get PDF
    Fouling of heat exchangers is a major problem in many industrial processes. The higher temperature of the heat exchange surface compared with the liquid containing precipitable compounds causes the formation of inorganic deposits. Removing the deposits on plate heat exchangers is most often carried out by high-pressure cleaning. This is a laborious task and often increases the corrosion rate of the plates by increasing the roughness of the cleaned surface. This study presents an electrochemical method to clean heat exchange surfaces fouled by deposits and to prevent formation of deposits. This method utilizes pulsating current to polarize heat exchange surfaces with periodic anodic and cathodic DC current. The shape of the pulse and the current density are adjusted to maximize the deposit removal rate, thus minimizing plate corrosion. The optimal pulsating current depends on the material of the heat exchange surface, as well as the composition of the deposits and the solution. For cleaning, the current densities and the frequency of the current pulse are typically higher than those used for preventing deposition. Pulsating current can effectively remove deposits with low solubility, such as TiO2 on titanium heat exchange plates or dense gypsum deposits on stainless steel plates. For cleaning titanium, the cathodic pulse and formation of hydrogen is more essential than in the cleaning of stainless steels. However, the risk of corrosion limits the use of high current densities. Experiments have until now been carried out mainly in the laboratory, though industrial pilot cleaning equipment has also been constructed. An application has already been submitted to patent the method

    Development of a Sandwich ELISA to Measure Exposure to Occupational Cow Hair Allergens

    Get PDF
    Background: Cow hair and dander are important inducers of occupational allergies in cattle-exposed farmers. To estimate allergen exposure in farming environments, a sensitive enzyme immunoassay was developed to measure cow hair allergens. Methods: A sandwich ELISA was developed using polyclonal rabbit antibodies against a mixture of hair extracts from different cattle breeds. To assess the specificity of the assay, extracts from other mammalian epithelia, mites, molds and grains were tested. To validate the new assay, cow hair allergens were measured in passive airborne dust samples from the stables and homes of farmers. Dust was collected with electrostatic dust fall collectors (EDCs). Results: The sandwich ELISA was found to be very sensitive (detection limit: 0.1 ng/ml) and highly reproducible, demonstrating intra-and interassay coefficients of variation of 4 and 10%, respectively. The assay showed no reactivity with mites, molds and grains, but some cross-reactivity with other mammalian epithelia, with the strongest reaction with goat. Using EDCs for dust sampling, high concentrations of bovine allergens were measured in cow stables (4,760-559,400 mu g/m(2)). In addition, bovine allergens were detected in all areas of cattle farmer dwellings. A large variation was found between individual samples (0.3-900 mu g/m(2)) and significantly higher values were discovered in changing rooms. Conclusion: The ELISA developed for the detection of cow hair proteins is a useful tool for allergen quantification in occupational and home environments. Based on its low detection limit, this test is sensitive enough to detect allergens in passive airborne dust. Copyright (C) 2011 S. Karger AG, Base

    Influence of Supercurrents on Low-Temperature Thermopower in Mesoscopic N/S Structures

    Full text link
    The thermopower of mesoscopic normal metal/superconductor structures has been measured at low temperatures. Effect of supercurrent present in normal part of the structure was studied in two cases: when it was created by applied external magnetic field and when it was applied directly using extra superconducting electrodes. Temperature and magnetic field dependencies of thermopower are compared to the numerical simulations based on the quasiclassical theory of the superconducting proximity effect.Comment: 21 pages, 12 figures. To be published in the proceedings of the ULTI conference organized in Lammi, Finland (2006

    Proof-of-principle of parametric stellarator neutronics modeling using Serpent2

    Get PDF
    This contribution presents neutron transport studies for the 5-period helical-axis advanced stellarator stellarator using the Serpent2 code. These studies utilize a parametric geometry model, enabling scans in neutronics modeling by varying the thickness of the reactor layers. For example, the tritium breeding ratio (TBR) can be determined by exploring various blanket material options and thicknesses to identify the threshold configuration that meets the TBR design criterion of 1.15. We found out that with the helium-cooled pebble ped candidate option, the TBR criterion is met with a breeding zone thickness of 26 cm, while with the dual-coolant lithium lead the threshold is exceeded at a thickness of 46 cm. Furthermore, the geometry includes non-planar field coils, allowing to study the fast neutron flux in these superconducting coils with a technological limit of 1 × 10 9 1 / cm 2 s . It is shown that the neutron fast flux is not constant at the coils, necessitating a neutron transport simulation to determine the distribution of the fast-flux at the coils. We show that the peak fast flux can be more than a factor of 2 higher than the average flux, and that the peak flux location rotates helically.</p

    Primary Sequences of Protein-Like Copolymers: Levy Flight Type Long Range Correlations

    Full text link
    We consider the statistical properties of primary sequences of two-letter HP copolymers (H for hydrophobic and P for polar) designed to have water soluble globular conformations with H monomers shielded from water inside the shell of P monomers. We show, both by computer simulations and by exact analytical calculation, that for large globules and flexible polymers such sequences exhibit long-range correlations which can be described by Levy-flight statistics.Comment: 4 pages, including 2 figures; several references added, some formulations improve

    Adiabaticity Criterion for Moving Vortices in Dilute Bose-Einstein Condensates

    Full text link
    Considering a moving vortex line in a dilute atomic Bose-Einstein condensate within time-dependent Hartree-Fock-Bogoliubov-Popov theory, we derive a criterion for the quasiparticle excitations to follow the vortex core rigidly. The assumption of adiabaticity, which is crucial for the validity of the stationary self-consistent theories in describing such time-dependent phenomena, is shown to imply a stringent criterion for the velocity of the vortex line. Furthermore, this condition is shown to be violated in the recent vortex precession experiments.Comment: 4 pages, 1 figur
    • …
    corecore