145 research outputs found

    Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The t(12;21)(p13;q22) translocation is found in 20 to 25% of cases of childhood B-lineage acute lymphoblastic leukemia (B-ALL). This rearrangement results in the fusion of <it>ETV6 </it>(<it>TEL</it>) and <it>RUNX1 </it>(<it>AML1</it>) genes and defines a relatively uniform category, although only some patients suffer very late relapse. <it>TEL/AML1</it>-positive patients are thus an interesting subgroup to study, and such studies should elucidate the biological processes underlying TEL/AML1 pathogenesis. We report an analysis of gene expression in 60 children with B-lineage ALL using Agilent whole genome oligo-chips (44K-G4112A) and/or real time RT-PCR.</p> <p>Results</p> <p>We compared the leukemia cell gene expression profiles of 16 <it>TEL/AML1</it>-positive ALL patients to those of 44 <it>TEL/AML1</it>-negative patients, whose blast cells did not contain any additional recurrent translocation. Microarray analyses of 26 samples allowed the identification of genes differentially expressed between the TEL/AML1-positive and negative ALL groups. Gene enrichment analysis defined five enriched GO categories: cell differentiation, cell proliferation, apoptosis, cell motility and response to wounding, associated with 14 genes -<it>RUNX1, TCFL5, TNFRSF7, CBFA2T3</it>, <it>CD9</it>, <it>SCARB1, TP53INP1, ACVR1C, PIK3C3, EGFL7</it>, <it>SEMA6A, CTGF, LSP1, TFPI </it>– highlighting the biology of the <it>TEL/AML1 </it>sub-group. These results were first confirmed by the analysis of an additional microarray data-set (7 patient samples) and second by real-time RT-PCR quantification and clustering using an independent set (27 patient samples). Over-expression of <it>RUNX1 (AML1) </it>was further investigated and in one third of the patients correlated with cytogenetic findings.</p> <p>Conclusion</p> <p>Gene expression analyses of leukemia cells from 60 children with <it>TEL/AML1</it>-positive and -negative B-lineage ALL led to the identification of five biological processes, associated with 14 validated genes characterizing and highlighting the biology of the <it>TEL/AML1</it>-positive ALL sub-group.</p

    Experimental Assessment of the Water Quality Influence on the Phosphorus Uptake of an Invasive Aquatic Plant: Biological Responses throughout Its Phenological Stage

    Get PDF
    International audienceUnderstanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 mu g.l(-1) P-PO43- and hypertrophic state, 300 mu g.l(-1) P-PO43-) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Multi-functionalization of magnetic nanoparticles for biosensing applications

    No full text
    5-7 décembre 2017International audienceno abstrac

    Elaboration et caractérisation structurale de nanocristaux moléculaires fluorescents inclus dans des couches minces sol-gel : Application à la réalisation de capteurs chimiques et biologiques.

    No full text
    We optimized the elaboration of organic nanocrystals in sol-gel thin films obtained by spin-coating. This study focuses on sol preparation with precursors containing organic spacers to enhance sol-gel matrix porosity. Using various characterization techniques (fluorescence confocal microscopy, transmission electron microscopy) enables us to compare the nucleation and growth process of crystals obtained from free solutions with the space confinement involved in our nanocrystallization process in sol-gel matrices. We identified a great number of crystallized nanoparticles in our samples and obtained in some cases, their crystallographic system by electronic diffraction and by fluorescence microscopy resolved in polarization. We used time-resolved fluorescence spectroscopy to analyze nanocrystals properties as the signalization function of a chemical sensor. Indeed, adsorption of a probe molecule produces a fluorescence quenching of the nanocrystals. This quenching is all the more efficient because of crystalline order, that delocalizes the excitation on a great ratio of the 10^4 to 10^10 molecules of a nanocrystal. Modifying sol-gel matrix porosity, we optimized whether diffusion towards nanocrystals, whether nanocrystals protection against not specific interactions. Then, we showed potentialities of our samples as biological sensors.Nous avons optimisé l'élaboration de nanocristaux organiques dans des couches minces sol-gel obtenues par « spin-coating ». Notre étude a porté plus particulièrement sur la préparation de sols avec des précurseurs contenant des groupes espaceurs organiques rigides en vue d'augmenter la taille des pores de la matrice sol-gel. L'utilisation de différentes techniques de caractérisation (microscopie optique confocale, microscopie électronique en transmission) nous a permis de sélectionner les fluorophores adaptés pour notre étude et de comparer le processus de nucléation-croissance de cristaux non supportés obtenus à partir de solutions libres avec le confinement spatial apporté par notre méthode de nanocristallisation. La diffraction électronique et la microscopie de fluorescence résolue en polarisation nous ont permis d'identifier un grand nombre de nanoparticules cristallisées et dans certains cas, de prouver leur monocristallinité. Les propriétés des nanocristaux en tant que fonction de signalisation d'un capteur chimique ont ensuite été analysées par spectroscopie de fluorescence résolue dans le temps. En effet, l'adsorption d'une molécule sonde appropriée entraîne une inhibition de la fluorescence des nanocristaux, d'autant plus significative grâce à l'ordre cristallin, qui permet de délocaliser l'excitation lumineuse sur une grande proportion des 10^4 à 10^10 molécules du nanocristal. En ajustant la porosité de la matrice sol-gel par des précurseurs contenant des groupes espaceurs, nous avons soit optimisé la diffusion de molécules vers les nanocristaux, soit protégé les nanocristaux contre des interactions non spécifiques. Enfin, nous avons montré les potentialités de nos échantillons comme capteurs biologiques

    Nanoparticules:un outil pour le diagnostic et l'imagerie médicale

    No full text
    3-4 avril 2014International audienceno abstrac

    Science and cooking: a fun approach to learning during teaching

    No full text
    International audienc

    Organic nanocrystals grown in sol–gel matrices: new hybrid organic–inorganic materials for optics

    No full text
    International audienceWe have developed a simple and generic preparation of stable organic nanocrystals grown in gel-glass matrices. The synthesis of these hybrid organic–inorganic materials is based on the confined nucleation and growth of organic phases in the pores of dense gels. For bulk nanocomposite samples, narrow size distributions of particles (10–20 nm in diameter) are obtained. We have extended this method to the preparation of organic nanocrystals embedded in sol–gel thin films prepared by spin-coating. For all these nanocomposite materials, we have significantly increased the dye stability and obtained promising optical properties: luminescence, non-linear optical properties or photochromism. Moreover, we have also demonstrated basic working principles of a new type of fluorescent nanosensor through the preparation of organic luminescent nanocrystals grown in silicate films
    corecore