14 research outputs found

    Expression of early growth response gene-2 and regulated cytokines correlate with recovery from Guillain-Barré syndrome

    Get PDF
    Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy. The goal of this research was the identification of biomarkers associated with recovery from GBS. In this study, we compared the transcriptome of PBMCs from a GBS patient and her healthy twin to discover possible correlates of disease progression and recovery. The study was then extended using GBS and spinal cord injury unrelated patients with similar medications and healthy individuals. The early growth response gene-2 (EGR2) was upregulated in GBS patients during disease recovery. The results provided evidence for the implication of EGR2 in GBS and suggested a role for EGR2 in the regulation of IL-17, IL-22, IL-28A, and TNF-ß cytokines in GBS patients. These results identified biomarkers associated with GBS recovery and suggested that EGR2 overexpression has a pivotal role in the downregulation of cytokines implicated in the pathophysiology of this acute neuropathy.This work was supported partially by European Union Framework Program 7 Antigone Project 278976. L.M.-H. was supported by a fellowship from the University of Castilla La Mancha (UCLM). M.V. was supported by the research plan of the UCLM.Peer Reviewe

    TLR4-pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury

    Get PDF
    Background and purpose: Activation of astrocytes contributes to synaptic remodelling, tissue repair and neuronal survival following traumatic brain injury (TBI). The mechanisms by which these cells interact to resident/infiltrated inflammatory cells to rewire neuronal networks and repair brain functions remain poorly understood. Here, we explored how TLR4-induced astrocyte activation modified synapses and cerebrovascular integrity following TBI. Experimental approach: To determine how functional astrocyte alterations induced by activation of TLR4 pathway in inflammatory cells regulate synapses and neurovascular integrity after TBI, we used pharmacology, genetic approaches, live calcium imaging, immunofluorescence, flow cytometry, blood-brain barrier (BBB) integrity assessment and molecular and behavioural methods. Key results: Shortly after a TBI, there is a recruitment of excitable and reactive astrocytes mediated by TLR4 pathway activation with detrimental effects on post-synaptic density-95 (PSD-95)/vesicular glutamate transporter 1 (VGLUT1) synaptic puncta, BBB integrity and neurological outcome. Pharmacological blockage of the TLR4 pathway with resatorvid (TAK-242) partially reversed many of the observed effects. Synapses and BBB recovery after resatorvid administration were not observed in IP3 R2-/- mice, indicating that effects of TLR4 inhibition depend on the subsequent astrocyte activation. In addition, TBI increased the astrocytic-protein thrombospondin-1 necessary to induce a synaptic recovery in a sub-acute phase. Conclusions and implications: Our data demonstrate that TLR4-mediated signalling, most probably through microglia and/or infiltrated monocyte-astrocyte communication, plays a crucial role in the TBI pathophysiology and that its inhibition prevents synaptic loss and BBB damage accelerating tissue recovery/repair, which might represent a therapeutic potential in CNS injuries and disorders.This work was supported by grants from the Instituto de Salud Carlos III (ISCIII) (Programa Miguel Servet II Grants CPII19/00005;PI16/00735; PI19/00082 to JE; and PI18/00357 to DC, partiallyfunded by FEDER - European Union ‘Una manera de hacer Europa’) and Fundación Mutua Madrileña to JE; European Union's Horizon2020 research and innovation programme under the H2020 MarieSkłodowska-Curie Actions grant agreement no. 794926 and StopFuga de Cerebros Roche Pharma to JMR; and Ministerio de Ciencia e Innovación RTI2018-094887-B-I00 and RYC-2016-20414 to MN andRYC2019-026870-I to JMR. DC, MCO, VVS and EFL are hired bySESCAM

    TLR4-pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury.

    Get PDF
    Background and purpose: Activation of astrocytes contributes to synaptic remodelling, tissue repair and neuronal survival following traumatic brain injury (TBI). The mechanisms by which these cells interact to resident/infiltrated inflammatory cells to rewire neuronal networks and repair brain functions remain poorly understood. Here, we explored how TLR4-induced astrocyte activation modified synapses and cerebrovascular integrity following TBI. Experimental approach: To determine how functional astrocyte alterations induced by activation of TLR4 pathway in inflammatory cells regulate synapses and neurovascular integrity after TBI, we used pharmacology, genetic approaches, live calcium imaging, immunofluorescence, flow cytometry, blood-brain barrier (BBB) integrity assessment and molecular and behavioural methods. Key results: Shortly after a TBI, there is a recruitment of excitable and reactive astrocytes mediated by TLR4 pathway activation with detrimental effects on post-synaptic density-95 (PSD-95)/vesicular glutamate transporter 1 (VGLUT1) synaptic puncta, BBB integrity and neurological outcome. Pharmacological blockage of the TLR4 pathway with resatorvid (TAK-242) partially reversed many of the observed effects. Synapses and BBB recovery after resatorvid administration were not observed in IP3 R2-/- mice, indicating that effects of TLR4 inhibition depend on the subsequent astrocyte activation. In addition, TBI increased the astrocytic-protein thrombospondin-1 necessary to induce a synaptic recovery in a sub-acute phase. Conclusions and implications: Our data demonstrate that TLR4-mediated signalling, most probably through microglia and/or infiltrated monocyte-astrocyte communication, plays a crucial role in the TBI pathophysiology and that its inhibition prevents synaptic loss and BBB damage accelerating tissue recovery/repair, which might represent a therapeutic potential in CNS injuries and disorders.This work was supported by grants from the Instituto de Salud Carlos III (ISCIII) (Programa Miguel Servet II Grants CPII19/00005;PI16/00735; PI19/00082 to JE; and PI18/00357 to DC, partiallyfunded by FEDER - European Union ‘Una manera de hacer Europa’) and Fundación Mutua Madrileña to JE; European Union's Horizon2020 research and innovation programme under the H2020 MarieSkłodowska-Curie Actions grant agreement no. 794926 and StopFuga de Cerebros Roche Pharma to JMR; and Ministerio de Ciencia e Innovación RTI2018-094887-B-I00 and RYC-2016-20414 to MN andRYC2019-026870-I to JMR. DC, MCO, VVS and EFL are hired bySESCAM

    Regulación de la expresión de genes pro-inflamatorios por interferón-gamma e interleuquina 4 papel del TNF& endógeno y de los factores reguladores de interferón

    Full text link
    Tesis Doctoral Inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 23-05-200

    Myeloid cell distribution and activity in multiple sclerosis

    No full text
    Multiple sclerosis (MS) is a demyelinating disease in which an exacerbated immune response provokes oligodendrocyte loss and demyelination, the hallmarks of this neurological disease. The destruction of myelin due to the uncontrolled activity of the invading immune cells leads to the formation of MS plaques. Among the different leukocytes that participate in the immune response associated with MS, the role of myeloid cells has been analyzed extensively (i.e. macrophages, dendritic cells -DCs- and neutrophils). Hence, in this review we will summarize what is known about the distribution, expression and markers available to study myeloid cells, and their histopathology, not only in a standard animal model of MS (autoimmune experimental encephalomyelitis -EAE) but also in MS tissue. In this review, we will not only refer to mature myeloid cells but also to the undifferentiated and almost unexplored myeloid-derived suppressor cells (MDSCs). The active role of MDSCs in the prompt resolution of an immune episode is gaining importance, yet is still the subject of some debate. Finally, the similarities and differences between MS and EAE are discussed, particularly in terms of myeloid cell phenotype, activity and the markers used

    Cellular and Molecular Processes Are Differently Influenced in Primary Neural Cells by Slight Changes in the Physicochemical Properties of Multicore Magnetic Nanoparticles

    Get PDF
    [EN] Herein, we use two exemplary superparamagnetic iron oxide multicore nanoparticles (SPIONs) to illustrate the significant influence of slightly different physicochemical properties on the cellular and molecular processes that define SPION interplay with primary neural cells. Particularly, we have designed two different SPION structures, NFA (i.e., a denser multicore structure accompanied by a slightly less negative surface charge and a higher magnetic response) and NFD (i.e., a larger surface area and more negatively charged), and identified specific biological responses dependent on SPION type, concentration, exposure time, and magnetic actuation. Interestingly, NFA SPIONs display a higher cell uptake, likely driven by their less negative surface and smaller protein corona, more significantly impacting cell viability and complexity. The tight contact of both SPIONs with neural cell membranes results in the significant augmentation of phosphatidylcholine, phosphatidylserine, and sphingomyelin and the reduction of free fatty acids and triacylglycerides for both SPIONs. Nonetheless, NFD induces greater effects on lipids, especially under magnetic actuation, likely indicating a preferential membranal location and/or a tighter interaction with membrane lipids than NFA, in agreement with their lower cell uptake. From a functional perspective, these lipid changes correlate with an increase in plasma membrane fluidity, again larger for more negatively charged nanoparticles (NFD). Finally, the mRNA expression of iron-related genes such as Ireb-2 and Fth-1 remains unaltered, while TfR-1 is only detected in SPION-treated cells. Taken together, these results demonstrate the substantial impact that minor physicochemical differences of nanomaterials may exert in the specific targeting of cellular and molecular processes. A denser multicore structure generated by autoclave-based production is accompanied by a slight difference in surface charge and magnetic properties that become decisive for the biological impact of these SPIONs. Their capacity to markedly modify the lipidic cell content makes them attractive as lipid-targetable nanomedicines.This work has received funding from the European Union’s Horizon Europe research and Innovation program under grant agreement No. 101098597. It has also been supported by Grant PID2020-113480RB-I00 funded by MCIN/AEI/10.13039/501100011033/. A.E. acknowledges grant RYC2020-029282-I from the Spanish MCIN. The MiNa Laboratory at IMN acknowledges its funding from CM (project S2018/NMT-4291 TEC2SPACE), MINECO (project CSIC13-4E-1794), and EU (FEDER, FSE)”. The lipidome studies at the Proteomics Facility of HNP-SESAM were supported by grant EQC2019-005971-P of the PE I C and T 2017-2020, funded by AEI and ERDFPeer reviewe

    Myeloid-derived suppressor cells limit the inflammation by promoting T lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis.

    Get PDF
    Multiple Sclerosis (MS) is a demyelinating/inflammatory disease of the central nervous system. Relapsing-remitting MS is characterized by a relapsing phase with clinical symptoms and the production of inflammatory cell infiltrates, and a period of remission during which patients recover partially. Myeloid-derived suppressor cells (MDSCs) are immature cells capable of suppressing the inflammatory response through Arginase-I (Arg-I) activity, among other mechanisms. Here, we have identified Arg-I+-MDSCs in the spinal cord during experimental autoimmune encephalomyelitis (EAE), cells that were largely restricted to the demyelinating plaque and that always exhibited the characteristic MDSC surface markers Arg-I/CD11b/Gr-1/M-CSF1R. The presence and density of Arg-I+-cells, and the proportion of apoptotic but not proliferative T cells, were correlated with the EAE time course: peaked in parallel with the clinical score, decreased significantly during the remitting phase and completely disappeared during the chronic phase. Spinal cord-isolated MDSCs of EAE animals augmented the cell death when co-cultured with stimulated control splenic CD3 T cells. These data point to an important role for MDSCs in limiting inflammatory damage in MS, favoring the relative recovery in the remitting phase of the disease. Thus, the MDSC population should be considered as a potential therapeutic target to accelerate the recovery of MS patients.This work was supported by the Ministerio de Ciencia e Innovación-MICINN (SAF2009-07842); Fondo de Investigaciones Sanitarias-FIS (partially funded by F.E.D.E.R.- European Union—“Una manera de hacer Europa”) (RD07-0060-2007); and Gobierno de Castilla-La Mancha (PAI08-0242-3822; ICS06024-00, G-2008-C8; PI2009-26). VMV and MCO are FISCAM fellows (MOV-2009_JI-01 and MOV-2007_JI-20, respectively). DC, VV and FdC are hired by SESCAM.Peer reviewe

    Tissue plasminogen activator worsens experimental autoimmune encephalomyelitis by complementary actions on lymphoid and myeloid cell responses.

    Get PDF
    BACKGROUND Tissue plasminogen activator (tPA) is a serine protease involved in fibrinolysis. It is released by endothelial cells, but also expressed by neurons and glial cells in the central nervous system (CNS). Interestingly, this enzyme also contributes to pathological processes in the CNS such as neuroinflammation by activating microglia and increasing blood-brain barrier permeability. Nevertheless, its role in the control of adaptive and innate immune response remains poorly understood. METHODS tPA effects on myeloid and lymphoid cell response were studied in vivo in the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis and in vitro in splenocytes. RESULTS tPA-/- animals exhibited less severe experimental autoimmune encephalomyelitis than their wild-type counterparts. This was accompanied by a reduction in both lymphoid and myeloid cell populations in the spinal cord parenchyma. In parallel, tPA increased T cell activation and proliferation, as well as cytokine production by a protease-dependent mechanism and via plasmin generation. In addition, tPA directly raised the expression of MHC-II and the co-stimulatory molecules CD80 and CD86 at the surface of dendritic cells and macrophages by a direct action dependent of the activation of epidermal growth factor receptor. CONCLUSIONS Our study provides new insights into the mechanisms responsible for the harmful functions of tPA in multiple sclerosis and its animal models: tPA promotes the proliferation and activation of both lymphoid and myeloid populations by distinct, though complementary, mechanisms
    corecore