1,959 research outputs found

    Dicke simulators with emergent collective quantum computational abilities

    Get PDF
    Using an approach inspired from Spin Glasses, we show that the multimode disordered Dicke model is equivalent to a quantum Hopfield network. We propose variational ground states for the system at zero temperature, which we conjecture to be exact in the thermodynamic limit. These ground states contain the information on the disordered qubit-photon couplings. These results lead to two intriguing physical implications. First, once the qubit-photon couplings can be engineered, it should be possible to build scalable pattern-storing systems whose dynamics is governed by quantum laws. Second, we argue with an example how such Dicke quantum simulators might be used as a solver of "hard" combinatorial optimization problems.Comment: 5+2 pages, 2 figures. revisited in the exposition and supplementary added. Comments are welcom

    Building Partial Discharge Signal Wireless Probes

    Get PDF
    This chapter focuses on the evaluation of the performances of different antenna sensors suitable for Partial Discharge (PD) measurements. Monopole, triangular and spherical antennas were simulated by means of the surface method of moments. The transmitting system is modeled by a power electronic device with a fault current between two metal plates. The shape of the simulated, transmitted and received signals, has been compared to verify the sensor that provides the best fidelity among the three. The auto-correlation function and the Pearson correlation index are adopted here for the comparison. A discussion on the dynamic characteristic of the different antenna probes and their use in different application is proposed

    Performances of rainfall energy harvester

    Get PDF
    In this paper the performances of rainfall energy harvesting by means of piezoelectric transducers is presented. Diverse studies agree on the level of suitable generated voltage on the electrodes of a piezoelectric transducer subjected to rainfall, but a complete characterization on the supplied power is still missing. This work, in order to limit optimistic forecasts, takes into account the behavior of the transducers subjected to real and also artificial rainfall, condition that has shown promising behavior in laboratory. In order to increase the energy harvesting and also define its limits different loads have been taken into account. Only commercial transducers have been considered: a lead zirconate titanate and polyvinylidene difluoride transducer

    Ultrafine particle apportionment and exposure assessment in respect of linear and point sources

    Get PDF
    Abstract The effects of particulate matter on the environment and public health were widely studied in recent years but agreement amongst these studies on the relative importance of the particle size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving towards greater focus on the smaller particles. In industrialized areas, anthropogenic activities are a major contributor to the particle concentrations. Then, it is important to characterize the emission sources as well as the evolution of particle size distribution in the proximity of these emission points. In this study, the authors evaluated the particle concentration and size distribution at a downwind receptor site of a linear (a major highway) and point (waste incinerator plant) source in an area characterized by high anthropic environmental impact. The particle emissions of the incinerator under examination were characterized by using a Scanning Mobility Particle Sizer ® (SMPS), an Aerodynamic Particle Sizer ® (APS) Spectrometer, a Rotating Disk Thermodiluter and a Thermal Conditioner (Matter Engineering AG). As regards the linear source, concentrations were determined at increasing distances from the most important Italian road, the A1 highway. Particle number, surface and mass exponentially decreases away from the freeway, whereas particle number concentration measured at 400 m downwind from the freeway is indistinguishable from upwind background concentration. Annual mean values of 8.6×10 ± 3.7×10 particle cm -3 and 31.1 ± 9.0 μg m -3 were found for particle number and PM 10 concentration, typical of a rural site. The particle apportionment and exposure assessment in respect of linear and point sources for ultrafine particles represent the major novelty of the present paper. The study here presented could be very important in developing appropriate management and control strategies for air quality in areas characterized by high anthropic pressure and to perform exposure assessment for populations involved

    Piezoelectric model of rainfall energy harvester

    Get PDF
    In this paper a model to predict the harvest of the energy contained in rainfall by means of piezoelectric transducers is presented. Different studies agree on the level of suitable generated voltage on the electrodes of a piezoelectric transducer subjected to rainfall, but a complete characterization on the supplied power is still missing. This work, in order to limit optimistic forecasts, compares the behavior of the transducers subjected to real and artificial rainfall, a condition that has shown promising behavior in laboratory

    Integration of an increasing-fidelity aerodynamic modelling approach in the conceptual design of hypersonic cruiser

    Get PDF
    This paper deals with the integration of an increasing-fidelity aerodynamic modelling approach in the conceptual design of hypersonic cruiser. At this purpose, a dedicated methodology has been developed in the framework of the H2020 STRATOFLY project and applied to the STRATOFLY MR3, the Mach 8 waverider reference configuration. Considering the complexity of the concept to be analyzed at conceptual/preliminary design stage, a build-up approach has been adopted, incrementally increasing the complexity of the aerodynamic model, from the clean external configuration up to the complete configuration, including Propulsion Systems Elements and Flight Control Surfaces. In parallel to the aerodynamic analysis, detailed Mission Analyses are performed at each step, benefitting of the incremental versions of the Aerodynamic Database which are used as input. The application of the entire methodology to the reference case-study, allows to estimate design margins to be used at the different steps, to avoid unsolicited under/over-estimations of fuel mass and ranges

    A hierarchical architecture for increasing efficiency of large photovoltaic plants under non-homogeneous solar irradiation

    Get PDF
    Under non-homogeneous solar irradiation, photovoltaic (PV) panels receive different solar irradiance, resulting in a decrease in efficiency of the PV generation system. There are a few technical options to fix this issue that goes under the name of mismatch. One of these is the reconfiguration of the PV generation system, namely changing the connections of the PV panels from the initial configuration to the optimal one. Such technique has been widely considered for small systems, due to the excessive number of required switches. In this paper, the authors propose a new method for increasing the efficiency of large PV systems under non-homogeneous solar irradiation using Series-Parallel (SP) topology. In the first part of the paper, the authors propose a method containing two key points: a switching matrix to change the connection of PV panels based on SP topology and the proof that the SP-based reconfiguration method can increase the efficiency of the photovoltaic system up to 50%. In the second part, the authors propose the extension of the method proposed in the first part to improve the efficiency of large solar generation systems by means of a two-levels architecture to minimize the cost of fabrication of the switching matrix
    • …
    corecore