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Abstract— In this paper a model to predict the harvest of  

the energy contained in rainfall by means of  piezoelectric 

transducers is presented. Different studies agree on the 

level of suitable generated voltage on the electrodes of a 

piezoelectric transducer subjected to rainfall, but a 

complete characterization on the supplied power is still 

missing. This work, in order to limit optimistic forecasts, 

compares the behavior of the transducers subjected to real 

and artificial rainfall, a condition that has shown 

promising behavior in laboratory.   
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I.  INTRODUCTION 

In recent years an increasing attention to the possibility of 
generating energy without the use of conventional thermal 
power or nuclear plants, led the study on the employment of 
smart materials.  The use of renewable energies such as solar 
and wind power seems to be the best way to ensure the 
requirements for the achievement of high levels of power and a 
reduced environmental impact, even leading to innovative 
research topics concerning power quality measurements under 
electromagnetic emissions [1-5]. On the other hand a study on 
an alternative energy harvest can be taken: the piezoelectric 
materials  seem to be the most suitable solution for the low 
power supply. The basic idea is to convert the mechanical 
energy of vibration or pressure into electrical energy. Different 
scenarios have been considered:  in [6] a study on the harvested 
energy from vibrating shoe-mounted piezoelectric cantilevers 
is presented; in [7] the energy harvesting from the vibrations of 
bridges is faced; in [8] the harvesting of energy induced from 
the deformation of pavements due to moving vehicles is 
analyzed; in [9] the harvesting from automotive tires is 
discussed; in [10] a harvesting from seismic mass is presented 
and also an optimization is discussed;  in [11] an innovative 
piezoelectric grass energy harvester is proposed; in [12] the 
energy harvesting from low frequencies travelling sound is 
presented, in [13] the wind energy harvesting is studied. Also 
the rainfall energy harvest has been faced [14-17]. The idea is 
to convert, by means of piezoelectric plates, the kinetic energy 
possessed by the drops of rainwater into electrical energy. A 
pioneering comparison of different piezoelectric materials, in 
order to investigate the possibility of energy generation water 
droplets energy sources for low power electronic devices, has 
been studied in [16]. These studies agree that the single drop of 
water hitting the piezoelectric plates generates voltages less 

than a dozen of volts (peak to peak, and without load), but no 
evaluation on power has been proposed. The drops of rain 
strike the piezoelectric material in a cantilever configuration, 
which may be subject to study to improve the energy produced 
[18-20]. Although the voltage peak to peak, produced by 
droplets, seems high enough to interact with electronic devices 
or rectifiers a more accurate characterization is required, in 
order to dispel excessive optimistic predictions. The concept of 
energy flow,  presented in [21,22], clarifies the dissipation of 
energy during the harvesting process, in order to separate the 
electromechanical coupling coefficient of the system, natural 
frequencies, damping ratio and electric load. A good analysis 
on the optimal AC–DC power generation for a rectified 
piezoelectric device is presented in [23, 24] and in [25] the 
problem of the storage energy has been considered. It is clear 
that the average harvested power particularly depends on the 
input vibration,  larger surfaces allows greater impact areas, 
and a potentially higher collected power, but the cantilever 
configuration has its optimal geometrical structure [26-30], and 
so, in order to improve the harvested power, particular 
configuration of piezoelectric in parallel or series can be 
considered [31, 32]. For larger surfaces, hitted by random 
pulses,  approaches based on the theory of random vibrations 
proposed in [33,34] can facilitate the raindrop energy 
harvesting. Matched inductive loads and schemes, which place 
a capacitor before the load in the conditioning circuit [35,36], 
increase the electrical energy transferred to the electrical 
system. A more definite analysis will concern the behavior of 
the device in the presence of strong stresses in terms of the 
electromagnetic field [37-39], by modeling the device as a 
receiving antenna [40]. 

II. PIEZOELECTRIC TRANSDUCERS AND RAINDROP 

Piezoelectricity is a property present in many materials: the 
generation of an electric charge in certain non-conducting 
materials, such as quartz crystals and ceramics, when they are 
subjected to mechanical stress (such as pressure or vibration) is 
known as direct piezoelectric effect, whereas the generation of 
vibrations in such materials when they are subjected to an 
electric field is the inverse effect. 

The ability of piezoelectric materials to convert electrical 
energy into mechanical and vice versa depends on their 
crystalline structure. The necessary condition occurs because 
the piezoelectric effect is the absence of a center of symmetry 
in the crystal, which is responsible for charge separation 
between positive and negative ions and the formation of the 
Weiss domains, ie groups of dipoles with parallel orientation. 
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Applying an electric field to a piezoelectric material, the 
Weiss domains are aligned in proportion to the field. 
Consequently, the size of the material change, by increasing or 
decreasing if the direction of the Weiss domains is the same as 
or opposite to the electric field. To describe in simplistic 
terms, a stress (tensile or compressive) applied to a piezo 
crystal will alter the separation between the positive and 
negative charge sites in each elementary cell leading to a net 
polarization at the crystal surface. The effect is practically 
linear, i.e. the polarization varies directly with the applied 
stress, and direction dependent, so that compressive and tensile 
stresses will generate electric fields and hence voltages of 
opposite polarity. It is beyond the scope of this study provide 
an exhaustive description of the phenomenon and of the 
changes that have been developed to optimize the electrical 
performance and mechanical specifications, interesting 
discussion can be found in [22]. 

In this study the energy harvester consists of a piezoelectric 
film on an epoxy cantilever sandwiched between electrodes 
that are used to collect the generated power. A water drop falls 
on the structure and it creates an impulsive force that brings 
the internal lattice structure of the piezoelectric element to 
deform, causing the loss of simmetry, and therefore to the 
generation of small dipoles, which global effect is an impulsive 
voltage on electrodes. Mechanical vibrations follow the 
impact, stress is induced within the material, thus giving rise 
to an electrical source. A sheet of piezoelectric material has 
some limitations in the mechanical-electrical transduction for 
low-frequency signals, since the effects of the induced electric 
field, generated in the hitted region, are mitigated by the 
surrounding  areas, and for large sheets effects are tenuous. 

 
Fig. 1. Schematic of the cantilever under the  piezoelectric 

effect. 
 

The behavior of generated pulses depends on the state of 
locking of the piezoelectric film: if it is bound by both ends, or 
only one. In this study only the response of the model locked 
by one end is evaluated.  

Different studies in the literature show encouraging results 
with regard to the generation of electricity from water droplets 
[14-16]. The piezoelectric transducers can reach tens of volts, 
but this result does not yet allow to attribute to them the 
character of power generators. The water drops continuity in 
the same place is very variable: there may be intervals of 
seconds (small rainfall) or fractions of seconds (downpour). 
Different performances due to variable drops dimensions 
(mass) and impact point make it hard to model the 
phenomenon. The voltage has a peak waveform, not a 
continuous voltage, so an equivalent average voltage has to be 
defined. For a power system the equivalent average current 
can be obtained by  using a bridge rectifier and a smoothing 

capacity; for the theoretical model initially this approach has 
been not considered. 

To evaluate the power output of a piezoelectric transducer 
it is necessary to define a range of possible stresses. The single 
drop of water can have a diameter that varies between 0.2 to 6 
mm. Considering a cruise speed on impact of approximately 2 
m/s for the small drop and 9 m/s for the largest, it is possible to 
estimate the energy input: Emin = 3.1µJ , Emax =0.063 J. Also 
considering the interval of two seconds to have a successive 
drop, the power is:  Pmin = 1.5µW , Pmax =0. 031W.  

The energy input is little, so no comparison can be made 
with a traditional photovoltaic system. 

The harvestable power, however, is affected by several 
factors. The drop, while centering fully the piezoelectric film, 
is not able to transfer maximum energy as it is subject to the 
phenomenon of splashing: the collision is not complete since 
the main drop is separated itself into small drops leaving the 
impact surface. It must therefore associate an efficiency of a 
collision. In the same way we should introduce a performance 
of the electrical-mechanical system. The drop stresses the 
piezoelectric according to the 31 mode and not all the energy is 
converted into charges on the plates of the transducer. Finally 
an electrical performance coefficient is to be introduced to take 
into account the losses of the rectifying bridge. The output 
power is given by: 

Pout = ηcollision ·  ηpiezo  ·  ηrect ·Pmax.          (1) 

The output power is certainly reduced, then the objective is 
to maximize it. 

The transducers on which the experiments were is the 
MEAS LDT1-028K [41]. The Meas PVDF is modificable, can 
be cutted in order to obtain particular shapes 

 

 

Fig.2. Meas LDT1-028k polyvinylidene difluoride (PVDF) 
transducer.  

III. CANTILEVER MODEL 

In order to achieve early information on the generable 
power, an equivalent model has been studied. In figure 3 is 
reported the electro-mechanical scheme presented in [28]. The 
mechanical and electrical part are connected via a particular 
transformer, which as shown in [42] is far from usual electric 
transformer  since current transformer ratio is not the reciprocal 
of voltage ratio.  In the mechanical scheme the stress σ has the 

role of voltage; first derivative of strain, S& , the one of current. 

On the equivalent inductance Lm the applied voltage is related 
to the second derivative of strain, on the equivalent resistance 
Rm voltage is related to the first derivative and on the 
capacitance Cm directly to the strain. The derivative is related 



to the longitudinal axis of the harvester, referred as axis1, not 
to time. Impact and following vibration are related to axis 3.   

 
Fig.3. Equivalent electro-mechanical scheme. 

 

For a mode 31 the principal mechanical and electric 
relations are: 
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with S strain, s compliance coefficient, σ stress, d 
piezoelectric strain coefficient, E electric field, D displacement 
field, ε permittivity. In the mechanical part the inductor Lm 
represents the equivalent mass and the inertia of the vibrating 
mass, Rm represents the mechanical losses, Cm represents the 
mechanical stiffness, stress generator σin is due to external 
mechanical vibration, the equivalent transformer relates the 
physical quantities with those electrical [28]. In the electrical 
part Ce represents the capacitance of the piezoelectric element, 
Re an external load and Ve is the voltage across the 
piezoelectric transducer. Electric and mechanical parameters 
depend on the shape and the vibration mode of the 
piezoelectric transducer. By applying the equivalent 
Kirchhoff’s rule on first loop: 
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the equivalent transformer constitutive equation are: 
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The equivalent inductance Lm is due to the geometrical 
configuration of the system, one edge of the cantilever is fixed, 
the free other is hitted by the mass of the drop of water, the 
inertia moment of the mass is evaluated [28]: 
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with b distance between middle points of layers as shown in 
figure 4. 

 

Fig. 4. Layer of the PVDF cantilever. 
The average stress in the beam is: 
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where 
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with lb length of cantilever, F force exerted by the drop. 

K1 is the geometrical coefficient which relates stress and 
external force: 

inin FK1=σ .              (8) 

During the vibrations K1 relates also the stress due to the 
mass of water attached to the cantilever: 

mL FK1=σ ,              (9) 

and in similar way it is related to the second derivative of 
the strain by: 
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with m mass of water and K2 geometrical coefficient. 

The equivalent inductance and resistance are : 

Lm = K1K2 m,  Rm= K1K2 bm             (11) 

with damping factor ,
Q
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Young’s module and Q =10. 

The equivalent capacitance relates strain with stress by 
using the compliance constant s11: 

∫==σ dxS
Cs

S

m

C
&

1

11

.           (12) 

In order to evaluate the voltage ratio nv a strein zero 
configuration has been taken into account: 
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electric field is related to voltage: 
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The electri current is: 
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Without considering an external electric field: 
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the charge on the electrodes is: 
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current and current ratio are: 
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The characterization has been made for an one-edge fixed 
cantilever but in a similar way the two-edge can be studied. 

TRANSFER FUNCTION 

Mechanical and electrical equations are: 
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by operating the Laplace transform: 
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Voltage transfer function is: 
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In figure 5 the magnitude of Bode diagram is traced; the 
maximum is located for the ωn = 260 rad/s. Such behavior is 
principally due to mechanical properties of the cantilever, it is 
an average profile since it is been made taking into account the 
resitance only of the obsilloscope (1 MΩ). 

 
Fig. 5. Bode’s diagram of the voltage transfer function. 
 

IV. EXPERIMENTAL STUDY 

In order to perform the verification of the transfer function, 
an indoor experiment to simulate the fall of rain on the 
piezoelectric material has been conducted. The experiment 
reconstructs the falling of drops of water on the cantilever, then 
the output voltage is recorded and finally it is compared with 
the performance obtained through the model. To simulate the 
fall of rain, however, was used a pipette, which allows to create 
artificially a drop of calibrated water, with a default speed due 
to the height of fall, figure 6. In the first place, it was necessary 
to fix the piezoelectric plate to a plane through a vise, in order 
to make stable the structure on one side and leave it completely 
free at the other, and this in order to keep intact the oscillatory 
properties of the material and therefore to reproduce the 
behavior of a cantilever beam. Furthermore, to make 
appropriate measures, the connectors of the lamina have been 
linked to the probe of an oscilloscope Lecroy model LT342L. 

 

Fig. 6. Pipette, cantilever and vise.  
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The pipette consists of a cylindrical capillary with thick 
walls, the end of which is cut along a section
the drops are formed. In particular, there is a linking 
relationship between the radius of the droplet and that of the 
capillary:  
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 where ρ is the surface tension of water, γ 
water and g is the gravity acceleration. 

 
Fig. 7. Schematization of the release stages of the drop from 

the pipette 
 

The use of the capillary for the creation of the drople
limit which concerns the movement of the liquid through the 
capillary. The process of ejection of the droplet must be 
relatively slow, in order to maintain a certain condition of static 
equilibrium, and to create drops similar to the ones of rain

The first experiment was conducted at a height of 80 cm. 
The oscilloscope is set to 2V/division in order 
accurate measurement, the waveform of the generated voltage 
is shown in figure 8.  As a pulse stress the system, the system 
itself responds to the frequency that maximizes the output
maximum of 6 V has been reached, this is due to the precision 
of  fall in the edge area of the cantilever, to
large drop, to the absence of the phenomenon of splashing.

Fig. 8. Time profile of the recorded voltage

V. VALIDATION OF THE MOD

The response of the model can be performed 
SIMULINK program, in which a simple block diagram
been developed, figure 9. 

Fig. 9. Simulink model of the piezoelectric system. 
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γ is the density of 
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of the droplet has a 
e liquid through the 

he process of ejection of the droplet must be 
relatively slow, in order to maintain a certain condition of static 
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The first experiment was conducted at a height of 80 cm. 
in order to obtain a more 

accurate measurement, the waveform of the generated voltage 
the system, the system 

itself responds to the frequency that maximizes the output. A 
due to the precision 
to the use of a very 

of the phenomenon of splashing. 

 
Time profile of the recorded voltage. 

ALIDATION OF THE MODEL 

performed by the 
simple block diagram has 

 
Simulink model of the piezoelectric system.  

The stress due to the water drop can be simulated by an 
impulsive force. A function similar to the delta of Dirac has 
been considered in the study. The pulse is defined as the limit 
for ∆ that tends to zero of the rectangular function
1/ ∆ and amplitude ∆, such function can have an infinite value 
for t=t0 and  outside the interval 
Figure 10 shows the time profile of the pulse. 

 

1

Fig. 10. Time-profile of the stress. 
 

By considering an observation ti
generator has been considered as not
the drop on the piezoelectric has been set 
time interval. The mass is 0.12 g, final velocity is 1.24 m/s, 
force is 0.77 N. Figure 11. shows the 
recorded voltage and the simulated one.

Fig.11. Comparison between the time profiles of recorded and 
simulated voltage.  

It can be seen that oscillations 
very similar to those recorded. Furthermore, the
obtained are similar.  In laboratory 
varying height of fall of the drop,
experiments have shown that with increasing height there is an 
increase in the maximum value of the voltage produc
drop, keeping constant its geometrical dimensions.
has been found that as the speed of fall
phenomenon occurs, and a loss of mechanical energy 
divergence of the theoretical results compared to experimenta
ones. 

VI. CONCLUSIONS 

This paper reports a detailed model of a piezoelectric 
harvester of rainfall energy. The model has been validated with 
data obtained from laboratory experiments. The time profiles 
of the simulated model and the experimental system hav
shown similar oscillations and similar peak values.
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