3,950 research outputs found

    Paradise revealed: first-class science rocked by the sound of the waves

    Get PDF
    Univ São Paulo, Inst Ciencias Biomed, Dept Imunol, BR-05508900 São Paulo, BrazilInst Nacl Ciencia & Tecnol, Inst Invest Imunol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, Diaderna, SP, BrazilFundacao Oswaldo Cruz, Inst Oswaldo Cruz, Lab Imunofarmacol, Rio de Janeiro, BrazilUniv São Paulo, Fac Med, BR-05508900 São Paulo, BrazilInst Nacl Canc, Div Biol Celular, Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, Diaderna, SP, BrazilWeb of Scienc

    A Method for Modeling Decoherence on a Quantum Information Processor

    Full text link
    We develop and implement a method for modeling decoherence processes on an N-dimensional quantum system that requires only an N2N^2-dimensional quantum environment and random classical fields. This model offers the advantage that it may be implemented on small quantum information processors in order to explore the intermediate regime between semiclassical and fully quantum models. We consider in particular σzσz\sigma_z\sigma_z system-environment couplings which induce coherence (phase) damping, though the model is directly extendable to other coupling Hamiltonians. Effective, irreversible phase-damping of the system is obtained by applying an additional stochastic Hamiltonian on the environment alone, periodically redressing it and thereby irreversibliy randomizing the system phase information that has leaked into the environment as a result of the coupling. This model is exactly solvable in the case of phase-damping, and we use this solution to describe the model's behavior in some limiting cases. In the limit of small stochastic phase kicks the system's coherence decays exponentially at a rate which increases linearly with the kick frequency. In the case of strong kicks we observe an effective decoupling of the system from the environment. We present a detailed implementation of the method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure

    Patch-Based Experiments with Object Classification in Video Surveillance

    Get PDF
    We present a patch-based algorithm for the purpose of object classification in video surveillance. Within detected regions-of-interest (ROIs) of moving objects in the scene, a feature vector is calculated based on template matching of a large set of image patches. Instead of matching direct image pixels, we use Gabor-filtered versions of the input image at several scales. This approach has been adopted from recent experiments in generic object-recognition tasks. We present results for a new typical video surveillance dataset containing over 9,000 object images. Furthermore, we compare our system performance with another existing smaller surveillance dataset. We have found that with 50 training samples or higher, our detection rate is on the average above 95%. Because of the inherent scalability of the algorithm, an embedded system implementation is well within reach

    Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization

    Full text link
    Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-free states in this model, and give a number of examples. In a sequel paper we show how to perform universal and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.Comment: 18 pages, no figures. Major changes. Section on universal fault tolerant computation removed. This section contained a crucial error. A new paper [quant-ph/0007013] presents the correct analysi

    Tracking the phase-transition energy in disassembly of hot nuclei

    Full text link
    In efforts to determine phase transitions in the disintegration of highly excited heavy nuclei, a popular practice is to parametrise the yields of isotopes as a function of temperature in the form Y(z)=zτf(zσ(TT0))Y(z)=z^{-\tau}f(z^{\sigma}(T-T_0)), where Y(z)Y(z)'s are the measured yields and τ,σ\tau, \sigma and T0T_0 are fitted to the yields. Here T0T_0 would be interpreted as the phase transition temperature. For finite systems such as those obtained in nuclear collisions, this parametrisation is only approximate and hence allows for extraction of T0T_0 in more than one way. In this work we look in detail at how values of T0T_0 differ, depending on methods of extraction. It should be mentioned that for finite systems, this approximate parametrisation works not only at the critical point, but also for first order phase transitions (at least in some models). Thus the approximate fit is no guarantee that one is seeing a critical phenomenon. A different but more conventional search for the nuclear phase transition would look for a maximum in the specific heat as a function of temperature T2T_2. In this case T2T_2 is interpreted as the phase transition temperature. Ideally T0T_0 and T2T_2 would coincide. We invesigate this possibility, both in theory and from the ISiS data, performing both canonical (TT) and microcanonical (e=E/Ae=E^*/A) calculations. Although more than one value of T0T_0 can be extracted from the approximate parmetrisation, the work here points to the best value from among the choices. Several interesting results, seen in theoretical calculations, are borne out in experiment.Comment: Revtex, 10 pages including 8 figures and 2 table

    Empirical Determination of Bang-Bang Operations

    Full text link
    Strong and fast "bang-bang" (BB) pulses have been recently proposed as a means for reducing decoherence in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we introduce a method for empirically determining the set of required BB pulses, that relies on quantum process tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand, without having to assume a model Hamiltonian.Comment: 14 pages, 2 eps figures, ReVTeX4 two-colum

    Inhibition of Decoherence due to Decay in a Continuum

    Get PDF
    We propose a scheme for slowing down decay into a continuum. We make use of a sequence of ultrashort 2π2\pi-pulses applied on an auxiliary transition of the system so that there is a destructive interference between the two transition amplitudes - one before the application of the pulse and the other after the application of the pulse. We give explicit results for a structured continuum. Our scheme can also inhibit unwanted transitions.Comment: 11 pages and 4 figures, submitted to Physical Review Letter

    Gender recognition from a partial view of the face using local feature vectors

    Get PDF
    This paper proposes a gender recognition scheme focused on local appearance-based features to describe the top half of the face. Due to the fact that only the top half of the face is used, this is a feasible approach in those situations where the bottom half is hidden. In the experiments, several face detection methods with different precision levels are used in order to prove the robustness of the scheme with respect to variations in the accuracy level of the face detection proces

    Contractive Schroedinger cat states for a free mass

    Get PDF
    Contractive states for a free quantum particle were introduced by Yuen [Yuen H P 1983 Phys. Rev. Lett. 51, 719] in an attempt to evade the standard quantum limit for repeated position measurements. We show how appropriate families of two- and three component ``Schroedinger cat states'' are able to support non-trivial correlations between the position and momentum observables leading to contractive behavior. The existence of contractive Schroedinger cat states is suggestive of potential novel roles of non-classical states for precision measurement schemes.Comment: 24 pages, 7 encapsulated eps color figures, REVTeX4 style. Published online in New Journal of Physics 5 (2003) 5.1-5.21. Higher-resolution figures available in published version. (accessible at http://www.njp.org/

    Partition Functions of Non-Abelian Quantum Hall States

    Full text link
    Partition functions of edge excitations are obtained for non-Abelian Hall states in the second Landau level, such as the anti-Read-Rezayi state, the Bonderson-Slingerland hierarchy and the Wen non-Abelian fluid, as well as for the non-Abelian spin-singlet state. The derivation is straightforward and unique starting from the non-Abelian conformal field theory data and solving the modular invariance conditions. The partition functions provide a complete account of the excitation spectrum and are used to describe experiments of Coulomb blockade and thermopower.Comment: 42 pages, 3 figures; published version; minor corrections to sect. 4.
    corecore