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Abstract. We present a patch-based algorithm for the purpose of object
classification in video surveillance. Within detected regions-of-interest
(ROIs) of moving objects in the scene, a feature vector is calculated
based on template matching of a large set of image patches. Instead of
matching direct image pixels, we use Gabor-filtered versions of the in-
put image at several scales. This approach has been adopted from recent
experiments in generic object-recognition tasks. We present results for a
new typical video surveillance dataset containing over 9,000 object im-
ages. Furthermore, we compare our system performance with another
existing smaller surveillance dataset. We have found that with 50 train-
ing samples or higher, our detection rate is on the average above 95%.
Because of the inherent scalability of the algorithm, an embedded system
implementation is well within reach.

1 Introduction

Traditional video surveillance systems comprise of video cameras generating
content-agnostic video streams, being recorded by digital video recorders. Re-
cently, there is a shift towards smart cameras that generate a notion of the
activity in the monitored scene by means of Video Content Analysis (VCA).
State-of-the-art VCA systems comprise object detection and tracking, thereby
generating location data of key objects in the video imagery of each camera.
For video surveillance, this technology can be used to effectively assist security
personnel.

While the detection and tracking algorithms are becoming mature, the clas-
sification of the detected objects is still in an early stage. Classification of the
detected objects is commonly done using the size of the object, where simple
camera calibration is applied to compensate for the perspective. However, effects
such as shadows and occlusion negatively influence the segmentation process and
thus the object classification (e.g. shadows increase the object size, and occlu-
sion decreases the size). Furthermore, when objects cross each other, they may
be combined into one object. For improved scene understanding, more advanced
object models are required, taking specific object features from the video into
account. The aim of our object modeling is to classify various objects in a reli-
able way, thereby supporting the decision-making process for a security operator
of a CCTV surveillance system.

J. Blanc-Talon et al. (Eds.): ACIVS 2007, LNCS 4678, pp. 285–296, 2007.
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In the presented work, we assume that the camera image has been segmented
into a static background and moving foreground objects using the algorithm
proposed in [1]. Initially, a texture and intensity analysis is applied between the
input image and the background reference frame at low-resolution. The resulting
initial foreground image blocks are further analyzed at high-resolution to obtain a
pixel-true segmentation mask. The extracted objects are represented by a shape
and bounding box description and will be referred to as Regions-Of-Interest
(ROIs) in the remainder of the paper.

In previous work [2] [3], wire-frame models were matched onto the detected
ROIs that represent the detected objects. The disadvantage of this approach
is that for each object, such a wire-frame model has to be designed and when
the number of objects grows, the classification distance between the models
decreases. Furthermore, the computational requirement grows linearly with the
number of object models. As an alternative, in this paper we study a patch-based
algorithm as proposed by Serre et al. [4]. In this technique, the computational
expensive stage of template and pattern matching, is independent of the number
of object classes and the classification is performed afterwards, on a subset of the
data, using feature vectors. Classification results for this algorithm show that
a classification rate above 95% is possible. The two approaches are compared
under the conditions of a possible implementation in an embedded environment,
where the computation power available is strictly limited and scalability of the
algorithm is important.

The remainder of the paper is as follows. In Section 2 related work is pre-
sented. Section 3 discusses the model that we use for object classification. The
dataset used is introduced in Section 4. The results of the algorithm are pre-
sented in Section 5, including a discussion on the comparison of the presented
algorithm and the previously considered wire-frame approach. The paper ends
with conclusions and future work.

2 Related Work

Model-based object classification/detection approaches are based on two differ-
ent classes of models: rigid (non-deformable) and non-rigid (deformable) models.
Rigid models are commonly used for the detection of objects like vehicles, where
non-rigid models are typically used for person detection.

In the following, we consider three types of algorithms. In various surveil-
lance systems, classification methods are commonly based on the pixel-size of
the object’s ROI. More advanced algorithms for traffic surveillance match 3D
wire-frame models onto the input image for the purpose of object tracking or
classification. Within the domain of generic object recognition in large multime-
dia databases, various proposed algorithms are based on low-level local descrip-
tors that model the object’s appearance. Each of the three methods will now be
addressed in more detail.

Region-of-interest methods are the most simple object models and computa-
tionally inexpensive. Systems that segment the camera input images into a static
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background image and moving foreground images (e.g. [1]), generate the object’s
ROI, which already provides some information about the detected objects, e.g.
pixel-size and -speed. Bose and Grimson [5] use the area of the bounding box and
the percentage of foreground pixels within the box as features. Furthermore, the
y-coordinate is used to compensate for the perspective in the scene. A different
method for obtaining perspective invariance is applied by Haritaoglu et al. [6],
who use projection histograms in x - and y-direction for tracked objects to make
a distinction between various object types.

Wire-frame models have been proposed for the purpose of model-based object
detection and tracking [2] [3]. For a more complete overview, we refer to previ-
ous work of the authors [7], where rigid object models have been considered for
the purpose of vehicle classification. The algorithm is briefly summarized here
as it will be discussed later in the paper. Within the already available ROI, the
algorithm tries to find the best matching image position for all models in the
database. After applying a 3 × 3 Sobel filter to the image in x - and y-direction,
a histogram of gradient orientations is generated, from which the object orien-
tation is extracted. Next, the 3D wire-frame model is projected onto the 2D
camera image, using the calculated orientation and the center of the ROI as
the object location. The projected 2D line-set is shifted over the image region
and calculates a matching error for each pixel position. The position giving the
smallest error defines the best matching pixel position. This is performed for all
models in the database, and the model with the lowest matching error is chosen
as the classified object model.

Low-level image features describing the object appearance are used by sev-
eral object recognition systems. Haar-wavelets are commonly used, because of
the low computational complexity [8], [9], [10].

Mikolajczyk and Schmid [11] compare the performance of various local in-
terest descriptors. They show that Scale Invariant Feature Transform (SIFT)
descriptors and the proposed extension of SIFT, Gradient Location and Ori-
entation Histogram (GLOH), outperform other methods. Dalai and Triggs [12]
compare the performance of Haar wavelets, PCA-SIFT [13] and Histogram Of
Gradient methods (HoG). They show that the HoG method outperforms the
others. Mikolajczyk et al. [14] generate HoG features for the purpose of person
detection, extended with Laplacian-filtered versions of the input images as blob
detectors.

Ma and Grimson [15] propose a method based on SIFT for the purpose of
vehicle classification in traffic video using a constant camera viewpoint.

Serre et al. [4] model findings from biology and neuro-science using a hierar-
chical feed-forward architecture. The model is shown to have performance in line
with human subjects, considering the first 150 ms of the human visual system in
a simple binary classification task [16]. Serre et al. have shown that the algorithm
outperforms SIFT in the generic object-recognition task. As mentioned, the ad-
vantage of this approach is that the image analysis part is independent of the
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amount of object classes. For this reason, the algorithm is suited for embedded
implementation and was therefore adopted for further exploration.

3 Algorithm Model

Since humans are good at object classification, it is reasonable to look into
biological and neurological findings. Based on findings from Hubel and Wiesel
[17], Riesenhuber and Poggio have developed the ”HMAX” model [18] that has
been extended recently by Serre [19], [4] and optimized by Mutch and Lowe [20].
We have implemented the model proposed by Serre up to the second processing
layer. In his thesis, Serre [16] proposes to extend the model with additional
third and fourth layers. For completeness, we will address the working of the
algorithm in the following. A simplified graphical representation of the model
for classification of objects detected in a video camera is shown in Figure 1,
where the first step of object detection is described in [1].

  Feature vector generation

Object 

detection
S1 C1 S2 C2

SVM 

Classifier

Prototype 

database

Fig. 1. Architecture for classification of objects in camera image

The algorithm is based on the concept of a feed-forward architecture, alter-
nating between simple and complex layers, in line with the findings of Hubel and
Wiesel [17]. The first layer implements line-detectors by filtering the graylevel
input image with Gabor filters of several sizes to obtain scale-invariance. The
filters are normalized to have zero mean and a unity sum of squares. The filter
size of the smallest filter (at scale zero) has a size of 7 × 7 elements, increasing
for every scale up to 37 × 37 elements (at scale 15).

The Gabor response is defined by:

G(x, y) = exp (−X2 + γ2Y 2

2σ2 ) cos (
2π

λ
X), (1)

where
X = x cos σ − y sin σ (2)

Y = x sin σ + y cos σ. (3)

We use the parameters as proposed by Serre et al. [4]. After applying the
Gabor filters onto the input image, the results are normalized. This compensates
for the image energy in each area of the input image that is used to generate the
filter-response. Hence, the final filter response for each filter is defined as:

R(I, F ) =
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where Ii denote pixels of the input image, and Fi denote the actual pixels within
the filter aperture. This filter response is called the S1 feature map. An example
of such a response for a car image, is shown in Figure 2.

Fig. 2. Gabor filter response (filter size 7×7 elements) on input image of a car (scaled
to 140 pixels in height)

3.1 Complex Layer 1 (C1)

The C1 layer from Figure 1 is added to obtain invariance in local neighbor-
hoods. This invariance will be created in both the spatial dimensions and in the
dimension of scale. Considering the dimension of scale, two S1 feature maps in
consecutive scales (132 elements in height for scale zero) are element-wise max-
imized. This generates one feature map for every two scales. The combination
of several scales results in a band. Next, in order to obtain spatial invariance,
the maximum is taken over a local spatial neighborhood around each pixel and
the resulting image is sub-sampled. Because of the down-sampling, the number
of C1 features is much lower than the number of S1 features. The resulting C1
feature maps for the input image (33 elements in height at band zero and 12 at
band 7) of the car image in Figure 2 are shown in Figure 3.

Fig. 3. C1 feature maps for S1 responses from Figure 2 (at band 0). Note that the C1
maps are re-scaled for visualization.

3.2 Simple Layer 2 (S2)

The next layer in the processing chain of the model applies template matching
of image patches onto the C1 feature maps. This can be compared to the simple
layer S1, where the filter response is generated for several Gabor filters. This
template matching is done for several image patches (prototypes). These patch
prototypes are extracted from natural images at a random band and spatial
location, at the C1 level. Each prototype contains all four orientations and pro-
totypes are extracted at four different sizes: 4 × 4, 8 × 8, 12 × 12 and 16 × 16
elements. Hence, a 4 × 4 patch contains 64 C1 elements.

Serre [16] has shown that for a large number of prototypes, the patches can
be extracted from random natural images, and do not specifically have to be
extracted from the training set.
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Fig. 4. Patch response for two example patches. The eight images of decreasing size
represent the S2 feature maps at each band. Note that the top prototype clearly results
in higher responses in the medium bands, where the lower prototype gives a higher
reaction in the lower bands. For simplicity, only patches of size 4 × 4 C1 elements are
considered.

The response of a prototype patch P over the C1 feature map C of the input
image I is defined by a radial basis function that normalizes the response to the
patch-size considered, as proposed by Mutch and Lowe [20].

Examples of image patches (prototypes) are shown in Figure 4 for the car
image from Figures 2 and 3. Note that we only show two patch prototypes, each
of size 4 × 4 C1 elements.

3.3 Complex Features Layer 2 (C2) and Feature Vector
Classification

In this layer, for each prototype patch, the most relevant response is extracted
and stored in the final feature vector. This is done by taking the maximum patch-
response over all bands and all spatial locations. Therefore, the final feature
vector has a dimensionality equal to the number of prototype patches used. In
our implementation, we used 1,000 prototype patches. Note that by considering
a higher or lower number of C1 patch prototypes, the required computation
power can be linearly scaled.

In order to classify the resulting C2 feature vector, we use a one-vs-all SVM
classifier with a linear kernel. The SVM with highest output score defines the
output class of the feature vector. The Torch3 library [21] was used for the
implementation of the SVM. Note that instead of the SVM, also a neural network
could have been used for the feature vector classification.

4 Dataset and Experimental Setup

The algorithm model of the previous section was implemented as follows. The
S1 layer filters the input image with Gabor filters at several scales, followed
by the C1 layer to obtain invariance in both scale and space. In the S2 layer,
the C1 feature maps are template matched with a high number of prototype
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patches. The final C2 layer obtains invariance by taking the global maximum
over both scale and space for each prototype patch. For each prototype patch,
this maximum value is stored in the final feature vector, which is classified using
the support vector machine.

The use of a relevant dataset is very important for objective comparison of
the proposed algorithms. Ponce et al. [22] discuss the datasets commonly used
for generic object detection/recognition. However, these generic datasets are not
specific for the typical surveillance case. Most available surveillance datasets have
been created for the purpose of object tracking, and therefore contain a strictly
limited number of different objects. For the purpose of object classification, a
high number of different objects is required. Ma and Grimson [15] presented
a limited dataset for separating various car types. Since future smart cameras
should be able to make a distinction between more object classes, we have created
a new dataset.

A one hour video-recording was made from a single, static camera, monitoring
a traffic crossing. The camera image was captured at CIF resolution (352x288
pixels), resulting in object ROIs of 10-100 pixels in height for a person in the
distance and a nearby bus, respectively. After applying the tracking algorithm
proposed by the authors of [1], the resulting object images were manually ad-
justed if required, to have a clean performance of the ROI extraction and avoid
any possible negative interference with the new algorithm. For this reason, redun-
dant images, images of occluded objects and images containing false detections
have been removed. Because of the limited time-span of the recording, the scene
conditions do not change significantly. The final dataset contains 9,233 images
of objects. The total object set has been split into the following 13 classes: trail-
ers, cars, city buses, Phileas buses (name of a specific type of bus), small buses,
trucks, small trucks, persons, cleaning cars, bicycles, jeeps, combos and scooters.
Some examples of each object class are shown in Figure 5.

The experiments were conducted on a PC P-IV running at 2 GHz. The average
processing time of an object image is about 4 to 5 seconds.

Fig. 5. Surveillance dataset Wijnhoven 2006

5 Results

This section shows the results for the object classification on the surveillance
dataset presented in Section 4. Each image is first converted to grayscale and
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scaled to 140 pixels in height while maintaining the aspect ratio. The total set
of images for each class is divided into a training and a test set at random. For
the training set, the number is specified (e.g. 30 samples) and the remainder of
the images is used for the test set.

Next, the feature vectors for all images are calculated using the methods
discussed in Section 3. The SVM classifier is trained with the feature vectors
of the images in the training set and tested with the test set. We present the
detection rate, being the percentage of images correctly classified. The final
detection rate is calculated by averaging the results over ten iterations.

The average correct detection rate in the case of 30 training samples per class
is 87.7%. The main misdetections are bicycles and scooters (13%), and combos
and small buses (13%).

For some simple applications, the classification between four object classes is
already significant. A camera that can make a distinction between cars, buses,
persons and bikes with high accuracy adds functionality to the camera that
only comprises object detection and tracking. Therefore, the total dataset of
9,233 object images has been redivided into a new dataset, containing only the
mentioned four object classes. Applying the same tests as mentioned before,
result in an increase in detection rate. Furthermore, because there are less classes
with a low number of object images, the number of learning samples can be
increased. Table 1 shows that the detection rate of such a four-class system
increases to 94.6% for 30 samples and up to 97.6% when 100 samples are learned.

Furthermore, we have compared our system with the system of Ma and Grimson
[5]. As can be seen in Table 2, our system outperforms the proposed SIFT-based
system for the car-van problem, in contrast to the sedan-taxi problem. Where
our proposed algorithm has been designed to limit the influence of small changes
within an object class, the SIFT-based algorithm focuses on describing more spe-
cific details of the test objects. This explains the differences in performance.

Table 1. Detection rates for the four-class classification problem

Training samples Car Bus Person Bike Average
1 62.7% 38.8% 64.9% 66.6% 58.3%
5 86.8% 73.1% 91.8% 84.0% 83.9%
10 87.3% 91.9% 93.5% 89.4% 90.5%
20 93.1% 94.6% 95.2% 92.3% 93.8%
50 96.7% 96.4% 97.1% 93.4% 95.9%
100 97.3% 99.4% 98.2% 95.6% 97.6%

Table 2. Detection rates for the traffic dataset from Ma and Grimson [5]

Ma Grimson Our method Difference
Car-van 98.5% 99.25% +0.75%

Sedan-taxi 95.76% 95.25% -0.49%



Patch-Based Experiments with Object Classification in Video Surveillance 293

5.1 Wire-Frame Models vs. Feature-Based Object Modeling

In discussing the differences between the wire-frame approach and the patch-
based techniques, we focus specifically on the trade-off between computational
requirements and performance, which is very important for implementation in
an embedded system.

Scale invariance is reached in the wire-frame approach by calibration of the
camera. This results in correct projections of the 3D models onto the 2D camera
image. With this a-priori knowledge, we scale the models to the correct size,
so they are relevant for the image pixel-position they are considered at. The re-
quirement of the calibration makes the wire-frame approach inherently sensitive
to the object size.

In contrast with this, the patch-based algorithm implements scale-invariance
by filtering with a set of Gabor filters of different size. By taking a global max-
imum in both scale and space in the C2 feature generation step, the algorithm
is not influenced by the actual object size.

It should be noted, that the variation factor of object sizes in typical camera
settings is quite limited. If they are large, scale-invariance can be reached by up-
or down-sampling of the original image pixels.

Scalability in required computation power in the patch-based approach
is reached by changing the number of C1 patch prototypes used in the template
matching process, which is the most expensive part of the system. Furthermore,
the parameters for the Gabor filters in S1 can be changed (e.g. number of ori-
entations and scales considered). This filtering can be implemented in a fully
parallel way. The generation of the feature vector is independent of the number
of object classes considered, where in the case of wire-frame models, each model
of the total set of 3D models needs to be matched.

A second aspect is that the template matching cost grows quadratically with
the image resolution. Changing the input resolution of the object images directly
results in a change of the required computation power. In the case of wire-frame
models, the complexity of the calculation of the orientation using the gradient
orientation histogram has a quadratic dependence on the image resolution, just
as the calculation of the matching error.

The level of camera calibration required for VCA systems is important for
the installer of a security system. Requesting a large number of parameters is
impractical and therefore, a semi-automatic approach is preferred. In the case of
wire-frame models, the installer only needs to calibrate the extrinsic camera pa-
rameters, since the intrinsic parameters are defined by the camera. The database
of 3D models does not depend on the camera calibration.

In the patch-based approach however, for optimal performance, the classifica-
tion system needs to be trained with training examples, coming from the actual
setting of the camera. There is some robustness for small changes in the camera
setting.
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6 Conclusions and Future Work

We have presented a scalable patch-based algorithm, suited for parallel imple-
mentation in an embedded environment. The algorithm has been tested on a new
dataset extracted from a typical traffic crossing. When the total set of object
images is divided into 13 classes and 30 samples per class are used for training,
a correct classification rate of 87.7% has been obtained. This performance in-
creases to 94.6% when the set is split into only four classes and reaches 97.6%
with 100 training samples. Furthermore, we have shown comparable performance
with the SIFT-based algorithm by Ma and Grimson [5] using their dataset.

The previously mentioned performance can be further improved by exploit-
ing application-specific information. Object-tracking algorithms provide useful
information that can be taken into account in the classification step. Viola and
Jones [23] show a performance gain by using the information from two consecu-
tive frames. Another potential improvement can be made as follows. Extracting
a sub-set of relevant features (C1 patch prototypes in our case) which are specific
to our application, can give a performance gain as shown by Wu and Nevatia [24].

For future research, it is interesting to know how much sensor information is
required to obtain a decent classification system. One of the first experiments
would be to measure the influence of the input image resolution on the classifi-
cation performance.

Fig. 6. Generic object modeling architecture, containing multiple detectors

A generic object modeling architecture can consist of several detectors
that include pixel-processing elements and classification systems. We propose a
generic architecture as visualized in Figure 6, where detectors can exchange both
features extracted at the pixel level and classification results. For the purpose
of person detection, Mohan et al. [9] propose multiple independent component
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detectors. The classifier output of each component is used in a final classifica-
tion stage. In contrast to this fully parallel implementation, Zuo [25] proposes a
cascaded structure with three different detectors to limit the computational cost
in a face-detection system.

Recently, the authors have considered a 3D wire-frame modeling approach
[7] that is completely application-specific. This means that for each typical new
application, 3D models have to be manually generated. Furthermore, addition
of a new object class requires a new model that differs from the other models
and implies the design of a new detector. On the opposite, the patch-based
approach is a more general approach which generates one feature vector for every
object image and the SVM classifier is trained to make a distinction between
the application-specific object classes.

In our view, when aiming at a generic object modeling architecture, we
envision a convergence between application-specific techniques and application-
independent algorithms, thereby leading to a mixture of both types of approaches.
The architecture as shown in Figure 6 should be interpreted in this way. For exam-
ple, in one detector the pixel processing may be generic whereas in the neighboring
detector the pixel processing could be application-specific. The more generic de-
tectors may be re-used for different purposes in several applications.
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