24 research outputs found

    Correlation energy of the spin-polarized electron liquid by quantum Monte Carlo

    Full text link
    Variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-Jastrow-backflow trial wave functions are used to study the spin-polarized three-dimensional uniform electron fluid. We report ground state VMC and DMC energies in the density range 0.5≤rs≤200.5 \leq r_\text{s} \leq 20. Finite-size errors are corrected using canonical-ensemble twist-averaged boundary conditions and extrapolation of the twist-averaged energy per particle calculated at three system sizes (N=113, 259, and 387) to the thermodynamic limit of infinite system size. The DMC energies in the thermodynamic limit are used to parameterize a local spin density approximation correlation function for inhomogeneous electron systems.Comment: arXiv admin note: substantial text overlap with arXiv:2209.1022

    Correlation energy of the paramagnetic electron gas at the thermodynamic limit

    Get PDF
    The variational and diffusion quantum Monte Carlo methods are used to calculate the correlation energy of the paramagnetic three-dimensional homogeneous electron gas at intermediate to high density. Ground state energies in finite cells are determined using Slater-Jastrow-backflow trial wave functions, and finite-size errors are removed using twist-averaged boundary conditions and extrapolation of the energy per particle to the thermodynamic limit of infinite system size. Our correlation energies in the thermodynamic limit are lower (i.e., more negative, and therefore more accurate according to the variational principle) than previous results, and can be used for the parameterization of density functionals to be applied to high-density systems

    Correlation energy of the spin-polarized electron liquid studied using quantum Monte Carlo simulations

    Get PDF
    Variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-Jastrow-backflow trial wave functions are used to study the spin-polarized three-dimensional uniform electron fluid. We report ground state VMC and DMC energies in the density range 0.5 ≤ r s ≤ 20 . Finite-size errors are corrected using canonical-ensemble twist-averaged boundary conditions and extrapolation of the twist-averaged energy per particle calculated at three system sizes ( N = 113 , 259 , and 387 ) to the thermodynamic limit of infinite system size. The DMC energies in the thermodynamic limit are used to parametrize a local spin density approximation correlation function for inhomogeneous electron systems

    STEP: extraction of underlying physics with robust machine learning

    Get PDF
    A prevalent class of challenges in modern physics are inverse problems, where physical quantities must be extracted from experimental measurements. End-to-end machine learning approaches to inverse problems typically require constructing sophisticated estimators to achieve the desired accuracy, largely because they need to learn the complex underlying physical model. Here, we discuss an alternative paradigm: by making the physical model auto-differentiable we can construct a neural surrogate to represent the unknown physical quantity sought, while avoiding having to relearn the known physics entirely. We dub this process surrogate training embedded in physics (STEP) and illustrate that it generalizes well and is robust against overfitting and significant noise in the data. We demonstrate how STEP can be applied to perform dynamic kernel deconvolution to analyse resonant inelastic X-ray scattering spectra and show that surprisingly simple estimator architectures suffice to extract the relevant physical information

    Development of a new quantum trajectory molecular dynamics framework

    Full text link
    An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalised Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared to other models.Comment: 20 pages, 6 figure

    Investigating Mechanisms of State Localization in Highly-Ionized Dense Plasmas

    Full text link
    We present the first experimental observation of Kβ_{\beta} emission from highly charged Mg ions at solid density, driven by intense x-rays from a free electron laser. The presence of Kβ_{\beta} emission indicates the n=3n=3 atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wavefunction localization metric, and find excellent agreement with experimental results.Comment: 22 pages, 13 figure

    Investigating mechanisms of state localization in highly ionized dense plasmas

    Get PDF
    Producción CientíficaWe present experimental observations of Kβ emission from highly charged Mg ions at solid density, driven by intense x rays from a free electron laser. The presence of Kβ emission indicates the n=3 atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wave-function localization metric, and find excellent agreement with experimental results.This work has been supported by the Spanish Ministry of Science and Innovation under Research Grant No. PID2019-108764RB-I0

    Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser

    Get PDF
    Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray–matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale

    Creation and study of matter in extreme conditions by high-intensity free-electron laser radiation

    No full text
    The recent development of free-electron lasers operating at XUV and X-ray wavelengths are proving vital for the exploration of matter in extreme conditions. The ultra-short pulse length and high peak brightness these light ources provide, combined with a tunable X-ray wavelength range, makes them ideally suited both for creating high energy density sample and for their subsequent study. In this thesis I describe the work done on the XUV free-electron laser FLASH in Hamburg, aimed at creating homogeneous samples of warm dense matter through the process of volumetric XUV photo-absorption, and the theoretical work undertaken to understand the process of high-intensity laser-matter interactions. As a first step, we have successfully demon- strated intensities above 1017 Wcm-2 at a wavelength of 13.5 nrn, by focusing the FEL beam to micron and sub-micron spot sizes by means of a multilayer-coated off-axis parabolic mirror. Using these record high intensities, we have demonstrated for the first time saturable absorp- tion in the XUV. The effect was observed in aluminium and magnesium samples and is due to the bleaching of a core-state absorption channel by the intense radiation field. This result has major implications for the creation of homogeneous high energy density systems, as a saturable absorption channel allows for a more homogeneous heating mechanism than previously thought possible. Further, we have conducted soft X-ray emission spectroscopy measurements which have delivered a wealth of information on the highly photo-excited system under irradiation, immediately after the excitation pulse, yet before the system evolves into the warm dense matter state. Such strongly photo-excited samples have also been studied theoretically, by means of den- sity functional theory coupled to molecular dynamics calculations, yielding detailed electronic structure information. The use of the emission spectroscopy as a probe for solid-density and finite-temperature systems is discussed in light of these results. Theoretical efforts have further been made in the study of the free-free absorption of aluminium as the system evolves from the solid state to warm dense matter. We predict an absorption peak in temperature a the system heats and forms a dense plasma. The physical significance of this effect is discussed in terms of intense light-matter interactions on both femtosecond and picosecond time-scales.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore