12 research outputs found

    AT1 and AT2 Receptor Knockout Changed Osteonectin and Bone Density in Mice in Periodontal Inflammation Experimental Model

    No full text
    Background: The aim of this study was to evaluate the role of AT1 and AT2 receptors in a periodontal inflammation experimental model. Methods: Periodontal inflammation was induced by LPS/Porphyromonas gingivalis. Maxillae, femur, and vertebra were scanned using Micro-CT. Maxillae were analyzed histopathologically, immunohistochemically, and by RT-PCR. Results: The vertebra showed decreased BMD in AT1 H compared with WT H (p < 0.05). The femur showed increased Tb.Sp for AT1 H and AT2 H, p < 0.01 and p < 0.05, respectively. The Tb.N was decreased in the vertebra (WT H-AT1 H: p < 0.05; WT H-AT2 H: p < 0.05) and in the femur (WT H-AT1 H: p < 0.01; WT H-AT2 H: p < 0.05). AT1 PD increased linear bone loss (p < 0.05) and decreased osteoblast cells (p < 0.05). RANKL immunostaining was intense for AT1 PD and WT PD (p < 0.001). OPG was intense in the WT H, WT PD, and AT2 PD when compared to AT1 PD (p < 0.001). AT1 PD showed weak immunostaining for osteocalcin compared with WT H, WT PD, and AT2 PD (p < 0.001). AT1 H showed significantly stronger immunostaining for osteonectin in fibroblasts compared to AT2 H (p < 0.01). Conclusion: AT1 receptor knockout changed bone density, the quality and number of bone trabeculae, decreased the number of osteoblast cells, and increased osteonectin in fibroblasts

    Soil organic matter and fertility of anthropogenic dark earths (Terra Preta de Índio) in the Brazilian Amazon basin Matéria orgânica e fertilidade de solos antropogênicos (Terra Preta De Índio) da Bacia Amazônica brasileira

    No full text
    Fertility properties, total C (Ctot), and chemical soil organic matter fractions (fulvic acid fraction - FA, humic acid fraction - HA, humin fraction - H) of anthropogenic dark earths (Terra Preta de Índio) of the Amazon basin were compared with those of Ferralsols with no anthropogenic A horizon. Terra Preta soils had a higher fertility (pH: 5.1-5.4; Sum of bases, SB: 8.93-10.33 cmol c kg-1 , CEC: 17.2-17.5 cmol c kg-1 , V: 51-59 %, P: 116-291 mg kg-1) and Ctot (44.6-44.7 g kg-1) than adjacent Ferralsols (pH: 4.4; SB: 2.04 cmol c kg-1, CEC: 9.5 cmol c kg-1, V: 21 %, P 5 mg kg-1, C: 37.9 g kg-1). The C distribution among humic substance fractions (FA, HA, H) in Terra Preta soils was also different, as shown by the ratios HA:FA and EA/H (EA=HA+FA) (2.1-3.0 and 1.06-1.08 for Terra Preta and 1.2 and 0.72 for Ferralsols, respectively). While the cation exchange capacity (CEC), of Ferralsols correlated with FA (r = 0.97), the CEC of Terra Preta correlated with H (r = 0.82). The correlation of the fertility of Terra Preta with the highly stable soil organic matter fraction (H) is highly significant for the development of sustainable soil fertility management models in tropical ecosystems.<br>Propriedades de fertilidade, carbono total (Ctot) e frações químicas da matéria orgânica (fração ácidos fúlvicos - FA, fração ácidos húmicos - HA e fração humina - HUM) foram comparados entre solos antrópicos (Terra Preta de Índio) e Latossolos sem horizonte A antrópico. Os solos antrópicos apresentaram maior fertilidade (pH: 5,1-5,4; S: 8,93-10,33 cmol c kg-1 ; CEC: 17,2-17,5 cmol c kg-1 ; V: 51-59 %; P: 116-291 mg kg-1) e maiores teores de carbono total (44,6-44,7 g kg-1) que os Latossolos (pH: 4,4; S: 2,04 cmol c kg-1; CEC: 9,5 cmol c kg-1; V: 21 %, P: 5 mg kg-1, Ctot: 37,9 g kg-1). Os solos antrópicos também tiveram distribuição diferenciada de C entre as frações das substâncias húmicas (FA, HÁ e HUM), expressa pelas razões HA:FA e EA:HUM (EA = HA + FA), que foram de 2,1-3,0 e 1,06-1,08 para as Terras Pretas de Índio e de 1,2 e 0,72 para Latossolos, respectivamente. Enquanto a capacidade de troca catiônica (CTC) de Latossolos apresentou correlação com a fração FA (r = 0,97), a CTC das Terras Pretas de Índio correlacionou-se com a fração HUM (r = 0,82). Essa correlação entre a fertilidade das Terras Pretas de Índio e a fração mais estável das substâncias húmicas (HUM) tem importantes implicações no desenvolvimento de modelos sustentáveis de manejo da fertilidade de solos em ecossistemas tropicais

    ATLANTIC BIRD TRAITS: a data set of bird morphological traits from the Atlantic forests of South America

    Get PDF
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    ATLANTIC BIRD TRAITS

    No full text
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore