73 research outputs found

    Efficacy of conventional versus innovative therapies for treating skin wounds in veterinary medicine

    Get PDF
    open16siINTRODUCTION: The skin is the largest organ of mammals. The loss of skin integrity may induce important dysfunctions or even death. For superficial wounds, the endogenous healing mechanisms in combination with traditional wound care are sufficient to achieve functional repair. In contrast, in larger wounds, like third and fourth degree burns, chronic wound or deep ulcers it is difficult to obtain the restitutio ad integrum and fibrosis and/or scar tissue develops1,2. The aim of this study was to verify the efficacy of conventional and innovative topic treatments on skin regeneration, induced experimentally in sheep. To achieve this goal different types of investigations (clinical, molecular, histological, immunohistochemical) were performed. METHODS: Six skin lesions (4x4cm) were surgically created on the back of six healthy adult sheep; every single wound was destined, in a randomized way, to one of the following treatments: Acemannan gel, Manuka Honey, hyaluronic acid, Plasma3 (ionized gas), allogeneic mesenchymal stem cells isolated from peripheral blood (PB-MSCs). The sixth wound was the placebo. Biopsies were collected with a surgical punch (0,6x0,6 cm) at time T0, T15 and T40 days. Lesions were clinically evaluated considering the presence and color of wound fluid, the state of hydration, the wound surface/surroundings and other parameters. Histological examinations considered crust formation, re-epithelization and epidermal thickness, dermis edema, extension of granulation tissue, acute and chronic inflammation. Immunohistochemistry for evaluation of inflammation, vascularization and cell proliferation was performed using CD3, CD20, MHCII, von Willebrand factor (vWF) and KI67 antibodies. Furthermore, Real time-PCR investigated genes as V ascular endothelial growth factors (VEGF), Transforming growth factor beta 1(TGFβ1), Vimentin (VIM), Collagen 1α1 (Col1α1) and hair Keratin (hKER). RESULTS: Clinically, the lesions treated with plasma healed more rapidly respect to other treatments and a reduced bacterial load was observed. At T7 wounds treated with stem cells and plasma were less macerated than lesions treated with other therapies. At T15 the wounds treated with hyaluronic acid showed a normal state of hydration while lesions treated with Manuka Honey exhibited a normal hydration from the third week only (Acemannan gel at fourth week). From the second week onwards all wounds did not show presence of fluid and exhibited a dry and clean secondary layer. All lesions, excluded wounds treated with acemannan gel, presented a red (hyaluronic acid and plasma) and dark red (Manuka Honey, PB-MSCs) granulation tissue starting from the first week. Molecular analysis showed a correspondence between clinical and molecular/histologic results. For instance, VEGF mRNA expression confirms angiogenetic events observed at histological level while TGF-β, CD3 and CD20 mRNA/protein expression indicated the presence/absence of inflammation in the used treatments. DISCUSSION & CONCLUSIONS: Innovative therapies led to surprising results regarding regeneration of mammalian skin. Indeed, on the basis of clinical analysis, wounds treated with plasma and MSC healed more rapidly. Further examinations are ongoing in order to elucidate possible mechanisms explaining these differences. REFERENCES: 1S.Y. Broeckx, S. Maes, T. Martinello, et al (2014) Equine epidermis: a source of epithelial-like stem/progenitor cells with in vitro and in vivo regenerative capacities Stem Cells Dev, pp 1134-48. 2J.H. Spaas, C. Gomiero, S.Y. Broeckx, et al (2016) Wound healing markers after autologous and allogeneic epithelial-like stem cell treatment Cytotherapy 2016 (in press). 3E. Martines, M. Zuin, R. Cavazzana, et al. (2009) A novel plasma source for sterilization of living tissues, New J. Phys. 11, 115014.openPatruno, MARCO VINCENZO; Gomiero, Chiara; Martinello, Tiziana; Perazzi, Anna; Gemignani, F; DE BENEDICTIS, GIULIA MARIA; Ferro, Silvia; Zuin, M; Martines, E; Cordaro, Luigi; Brun, Paola; Maccatrozzo, Lisa; Broeckx, Sy; Spaas, Jh; Chiers, K; Iacopetti, IlariaPatruno, MARCO VINCENZO; Gomiero, Chiara; Martinello, Tiziana; Perazzi, Anna; Gemignani, F; DE BENEDICTIS, GIULIA MARIA; Ferro, Silvia; Zuin, M; Martines, E; Cordaro, Luigi; Brun, Paola; Maccatrozzo, Lisa; Broeckx, Sy; Spaas, Jh; Chiers, K; Iacopetti, Ilari

    Arterial pressure changes monitoring with a new precordial noninvasive sensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been validated. A further application is the assessment of Second Heart Sound (S2) amplitude variations at increasing heart rates. The aim of this study was to assess the relationship between second heart sound amplitude variations at increasing heart rates and hemodynamic changes.</p> <p>Methods</p> <p>The transcutaneous force sensor was positioned in the precordial region in 146 consecutive patients referred for exercise (n = 99), dipyridamole (n = 41), or pacing stress (n = 6). The curve of S2 peak amplitude variation as a function of heart rate was computed as the increment with respect to the resting value.</p> <p>Results</p> <p>A consistent S2 signal was obtained in all patients. Baseline S2 was 7.2 ± 3.3 m<it>g</it>, increasing to 12.7 ± 7.7 m<it>g </it>at peak stress. S2 percentage increase was + 133 ± 104% in the 99 exercise, + 2 ± 22% in the 41 dipyridamole, and + 31 ± 27% in the 6 pacing patients (p < 0.05). Significant determinants of S2 amplitude were blood pressure, heart rate, and cardiac index with best correlation (R = .57) for mean pressure.</p> <p>Conclusion</p> <p>S2 recording quantitatively documents systemic pressure changes.</p

    Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates.</p> <p>Aim</p> <p>To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system.</p> <p>Methods</p> <p>We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording.</p> <p>Results</p> <p>Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed.</p> <p>Conclusion</p> <p>Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.</p

    Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study

    Get PDF
    Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity-there are over 80 potential disease-associated genes-and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several in silico tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy

    Neurophysiological and Behavioural Variables in Cognitive Impairment: Towards a Personalised Monitoring System

    No full text
    The social changes and the population aging process increase the incidence of problems ranging from simple para-physiological reduction of psycho-physical and sensorial capacities to the cognitive impairment of different degrees. In this scenario, telemonitoring and telemedicine are useful tools for support, care and prevention. This paper shows how several clinical data can be acquired by personalized monitoring and used to evaluate in the follow up possible therapeutical results. Sleep modification that arises with the physiological aging process and in the presence of neurodegeneration were correlated to a dramatic reduction of the Slow Wave Sleep (SWS). These results improved the knowledge regarding the relation between sleep and wellbeing. Different ICT tools can be in perspectives considered within diagnostic and therapeutic personalized programs, i.e. Surface ElectroMyoGraphy, olfactory tests, wearable devices, sleep monitoring and metabolic characterization

    Transthoracic Sensor for Noninvasive Assessment of Left Ventricular Contractility: Validation in A Minipig Model of Chronic Heart Failure.

    No full text
    Background:Invasively measured left ventricular (LV) dP/dt is the accepted standard for measuring acute and chronic directional changes in LV contractility. Recently, we developed a noninvasive force sensor based on an accelerometer positioned on the chest, which measures the vibrations generated by isovolumic myocardial contraction. The aim of this paper was to compare noninvasive (accelerometer) versus invasive (LV dP/dt) indices of myocardial contractility in a chronic minipig model of pacing-induced heart failure (HF). Comparative assessment was performed both at rest and following dobutamine infusion. Methods:In adult male minipigs (n = 6), LV contractility was simultaneously assessed both invasively (LV dP/dt, Millar catheter) and noninvasively (accelerometer) at rest and following dobutamine (up to 7.5 mcg/kg/min), both before and after development of HF by pacing the LV at 180 beats/min for 3 weeks. Results:Invasive and noninvasive assessments were obtained in 24 conditions (12 at rest and 12 after dobutamine infusion). Sensor-based cardiac force changes were significantly related to positive peak LV dP/dt(max) changes following dobutamine infusion both in normal (r = 0.88, P < 0.001) and failing heart (r = 0.89, P < 0.001). The force-frequency relation showed a tight correlation between invasive and noninvasive assessment (r = 0.68, P = 0.02). Conclusions:The force-frequency relation can be assessed noninvasively by a transthoracic sensor based on an accelerometer. The method can efficiently detect the development of resting dysfunction and the contractile reserve at different HF steps, with potential for wearable HF monitoring
    • …
    corecore