86 research outputs found

    Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    Get PDF
    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems

    Reference Inflow Characterization for River Resource Reference Model (RM2)

    Get PDF
    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship

    Experimental Test Plan DOE Tidal and River Reference Turbines

    Full text link
    Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers

    ORNL ADCP POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS

    Get PDF
    Standard methods, along with guidance for post-processing the ADCP stationary measurements using MATLAB algorithms that were evaluated and tested by Oak Ridge National Laboratory (ORNL), are presented following an overview of the ADCP operating principles, deployment methods, error sources and recommended protocols for removing and replacing spurious data

    Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    Get PDF
    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only

    ORNL ADV POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS

    Get PDF
    This report details standard protocols for post-processing acoustic Doppler velocimeter (ADV) measurements, including guidance on using a MATLAB code for such processing

    Effects of accelerated versus standard care surgery on the risk of acute kidney injury in patients with a hip fracture : a substudy protocol of the hip fracture Accelerated surgical TreaTment And Care tracK (HIP ATTACK) international randomised controlled trial

    Get PDF
    Introduction Inflammation, dehydration, hypotension and bleeding may all contribute to the development of acute kidney injury (AKI). Accelerated surgery after a hip fracture can decrease the exposure time to such contributors and may reduce the risk of AKI. Methods and analysis Hip fracture Accelerated surgical TreaTment And Care tracK (HIP ATTACK) is a multicentre, international, parallel-group randomised controlled trial (RCT). Patients who suffer a hip fracture are randomly allocated to either accelerated medical assessment and surgical repair with a goal of surgery within 6 hours of diagnosis or standard care where a repair typically occurs 24 to 48 hours after diagnosis. The primary outcome of this substudy is the development of AKI within 7 days of randomisation. We anticipate at least 1998 patients will participate in this substudy. Ethics and dissemination We obtained ethics approval for additional serum creatinine recordings in consecutive patients enrolled at 70 participating centres. All patients provide consent before randomisation. We anticipate reporting substudy results by 2021. Trial registration number NCT02027896; Pre-results

    Effects of accelerated versus standard care surgery on the risk of acute kidney injury in patients with a hip fracture : A substudy protocol of the hip fracture Accelerated surgical TreaTment and Care tracK (HIP ATTACK) international randomised controlled trial

    Get PDF
    Introduction Inflammation, dehydration, hypotension and bleeding may all contribute to the development of acute kidney injury (AKI). Accelerated surgery after a hip fracture can decrease the exposure time to such contributors and may reduce the risk of AKI. Methods and analysis Hip fracture Accelerated surgical TreaTment And Care tracK (HIP ATTACK) is a multicentre, international, parallel-group randomised controlled trial (RCT). Patients who suffer a hip fracture are randomly allocated to either accelerated medical assessment and surgical repair with a goal of surgery within 6 hours of diagnosis or standard care where a repair typically occurs 24 to 48 hours after diagnosis. The primary outcome of this substudy is the development of AKI within 7 days of randomisation. We anticipate at least 1998 patients will participate in this substudy. Ethics and dissemination We obtained ethics approval for additional serum creatinine recordings in consecutive patients enrolled at 70 participating centres. All patients provide consent before randomisation. We anticipate reporting substudy results by 2021. Trial registration number NCT02027896; Pre-results

    Rationale and design of the hip fracture accelerated surgical treatment and care track (hip attack) trial : A protocol for an international randomised controlled trial evaluating early surgery for hip fracture patients

    Get PDF
    Introduction Annually, millions of adults suffer hip fractures. The mortality rate post a hip fracture is 7%-10% at 30 days and 10%-20% at 90 days. Observational data suggest that early surgery can improve these outcomes in hip fracture patients. We designed a clinical trial - HIP fracture Accelerated surgical TreaTment And Care tracK (HIP ATTACK) to determine the effect of accelerated surgery compared with standard care on the 90-day risk of all-cause mortality and major perioperative complications. Methods and analysis HIP ATTACK is a multicentre, international, parallel group randomised controlled trial (RCT) that will include patients ≥45 years of age and diagnosed with a hip fracture from a low-energy mechanism requiring surgery. Patients are randomised to accelerated medical assessment and surgical repair (goal within 6 h) or standard care. The co-primary outcomes are (1) all-cause mortality and (2) a composite of major perioperative complications (ie, mortality and non-fatal myocardial infarction, pulmonary embolism, pneumonia, sepsis, stroke, and life-threatening and major bleeding) at 90 days after randomisation. All patients will be followed up for a period of 1 year. We will enrol 3000 patients. Ethics and dissemination All centres had ethics approval before randomising patients. Written informed consent is required for all patients before randomisation. HIP ATTACK is the first large international trial designed to examine whether accelerated surgery can improve outcomes in patients with a hip fracture. The dissemination plan includes publishing the results in a policy-influencing journal, conference presentations, engagement of influential medical organisations, and providing public awareness through multimedia resources. Trial registration number NCT02027896; Pre-results
    • …
    corecore