209 research outputs found

    A locus-specific database for mutations in GDAP1 allows analysis of genotype-phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ganglioside-induced differentiation-associated protein 1 gene (<it>GDAP1</it>), which is involved in the Charcot-Marie-Tooth disease (CMT), the most commonly inherited peripheral neuropathy, encodes a protein anchored to the mitochondrial outer membrane. The phenotypic presentations of patients carrying <it>GDAP1 </it>mutations are heterogeneous, making it difficult to determine genotype-phenotype correlations, since the majority of the mutations have been found in only a few unrelated patients. Locus-specific databases (LSDB) established in the framework of the Human Variome Project provide powerful tools for the investigation of such rare diseases.</p> <p>Methods and Results</p> <p>We report the development of a publicly accessible LSDB for the <it>GDAP1 </it>gene. The <it>GDAP1</it> LSDB has adopted the Leiden Open-source Variation Database (LOVD) software platform. This database, which now contains 57 unique variants reported in 179 cases of CMT, offers a detailed description of the molecular, clinical and electrophysiological data of the patients. The usefulness of the <it>GDAP1 </it>database is illustrated by the finding that <it>GDAP1 </it>mutations lead to primary axonal damage in CMT, with secondary demyelination in the more severe cases of the disease.</p> <p>Conclusion</p> <p>Findings of this nature should lead to a better understanding of the pathophysiology of CMT. Finally, the <it>GDAP1 </it>LSDB, which is part of the mitodyn.org portal of databases of genes incriminated in disorders involving mitochondrial dynamics and bioenergetics, should yield new insights into mitochondrial diseases.</p

    BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex.

    Get PDF
    Motor training can induce profound physiological plasticity within primary motor cortex, including changes in corticospinal output and motor map topography. Using transcranial magnetic stimulation, we show that training-dependent increases in the amplitude of motor-evoked potentials and motor map reorganization are reduced in healthy subjects with a val66met polymorphism in the brain-derived neurotrophic factor gene (BDNF), as compared to subjects without the polymorphism. The results suggest that BDNF is involved in mediating experience-dependent plasticity of human motor cortex

    Succinate Dehydrogenase Is a Direct Target of Sirtuin 3 Deacetylase Activity

    Get PDF
    BACKGROUND: Sirtuins (SIRT1-7) are a family of NAD-dependent deacetylases and/or ADP-ribosyltransferases that are involved in metabolism, stress responses and longevity. SIRT3 is localized to mitochondria, where it deacetylates and activates a number of enzymes involved in fuel oxidation and energy production. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a proteomic screen to identify SIRT3 interacting proteins and identified several subunits of complex II and V of the electron transport chain. Two subunits of complex II (also known as succinate dehydrogenase, or SDH), SDHA and SDHB, interacted specifically with SIRT3. Using mass spectrometry, we identified 13 acetylation sites on SDHA, including six novel acetylated residues. SDHA is hyperacetylated in SIRT3 KO mice and SIRT3 directly deacetylates SDHA in a NAD-dependent manner. Finally, we found that SIRT3 regulates SDH activity both in cells and in murine brown adipose tissue. CONCLUSIONS/SIGNIFICANCE: Our study identifies SDHA as a binding partner and substrate for SIRT3 deacetylase activity. SIRT3 loss results in decreased SDH enzyme activity, suggesting that SIRT3 may be an important physiological regulator of SDH activity

    Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I.

    Get PDF
    NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients' tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed

    Simultaneous MFN2 and GDAP1 mutations cause major mitochondrial defects in a patient with CMT

    Get PDF
    Mutations in the MFN2 gene are associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a dominant axonal CMT, whereas mutations in GDAP1 are associated with recessive demyelinating CMT (CMT4A), recessive axonal CMT (AR-CMT2), and dominant axonal CMT (CMT2K). Both proteins are involved in energy metabolism and dynamics of the mitochondrial network. We have previously reported that, in fibroblasts from patients with CMT, MFN2 mutations resulted in a mitochondrial energy coupling defect, whereas dominant mutation in GDAP1 resulted in defective complex I activity. In this study, we investigated mitochondrial bioenergetics from a severely affected patient with CMT harboring combined mutations in both GDAP1 and MFN2 genes

    Acute and late-onset optic atrophy due to a novel OPA1 mutation leading to a mitochondrial coupling defect

    Get PDF
    PurposeAutosomal dominant optic atrophy (ADOA, OMIM 165500), an inherited optic neuropathy that leads to retinal ganglion cell degeneration and reduced visual acuity during the early decades of life, is mainly associated with mutations in the OPA1 gene. Here we report a novel ADOA phenotype associated with a new pathogenic OPA1 gene mutation. Methods The patient, a 62-year-old woman, was referred for acute, painless, and severe visual loss in her right eye. Acute visual loss in her left eye occurred a year after initial presentation. MRI confirmed the diagnosis of isolated atrophic bilateral optic neuropathy. We performed DNA sequencing of the entire coding sequence and the exon/intron junctions of the OPA1 gene, and we searched for the mitochondrial DNA mutations responsible for Leber hereditary optic atrophy by sequencing entirely mitochondrial DNA. Mitochondrial respiratory chain complex activity and mitochondrial morphology were investigated in skin fibroblasts from the patient and controls. Results We identified a novel heterozygous missense mutation (c.2794C&gt;T) in exon 27 of the OPA1 gene, resulting in an amino acid change (p.R932C) in the protein. This mutation, which affects a highly conserved amino acids, has not been previously reported, and was absent in 400 control chromosomes. Mitochondrial DNA sequence analysis did not reveal any mutation associated with Leber hereditary optic neuropathy or any pathogenic mutations. The investigation of skin fibroblasts from the patient revealed a coupling defect of oxidative phosphorylation and a larger proportion of short mitochondria than in controls. Conclusions The presence of an OPA1 mutation indicates that this sporadic, late-onset acute case of optic neuropathy is related to ADOA and to a mitochondrial energetic defect. This suggests that the mutational screening of the OPA1 gene would be justified in atypical cases of optic nerve atrophy with no evident cause

    Metabolomics hallmarks OPA1 variants correlating with their in-vitro phenotype and predicting clinical severity

    Get PDF
    Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1 12/ 12 MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1 12/ 12 MEFs metabolic signatures and classified OPA1 variants according to their in-vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1 12/ 12 MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in-vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment
    corecore