87 research outputs found

    Aberrant Function of Learning and Cognitive Control Networks Underlie Inefficient Cognitive Flexibility in Anorexia Nervosa: A Cross-Sectional fMRI Study

    Get PDF
    Objectives People with Anorexia Nervosa exhibit difficulties flexibly adjusting behaviour in response to environmental changes. This has previously been attributed to problematic behavioural shifting, characterised by a decrease in fronto-striatal activity. Additionally, alterations of instrumental learning, which relies on fronto-striatal networks, may contribute to the observation of inflexible behaviour. The authors sought to investigate the neural correlates of cognitive flexibility and learning in Anorexia Nervosa. Method Thirty-two adult females with Anorexia Nervosa and thirty-two age-matched female control participants completed the Wisconsin Card Sorting Task whilst undergoing functional magnetic resonance imaging. Event-related analysis permitted the comparison of cognitive shift trials against those requiring maintenance of rule-sets and allowed assessment of trials representing learning. Results Although both groups performed similarly, we found significant interactions in the left middle frontal gyrus, precuneus and superior parietal lobule whereby blood-oxygenated-level dependent response was higher in Anorexia Nervosa patients during shifting but lower when maintaining rule-sets, as compared to healthy controls. During learning, posterior cingulate cortex activity in healthy controls decreased whilst increasing in the Anorexia Nervosa group, whereas the right precuneus exhibited the opposite pattern. Furthermore, learning was associated with lower blood-oxygenated-level dependent response in the caudate body, as compared to healthy controls. Conclusions People with Anorexia Nervosa display widespread changes in executive function. Whilst cognitive flexibility appears to be associated with aberrant functioning of the fronto-parietal control network that mediates between internally and externally directed cognition, fronto-striatal alterations, particularly within the caudate body, were associated with instrumental learning. Together, this shows how perseverative tendencies could be a substrate of multiple high-order processes that may contribute to the maintenance of Anorexia Nervosa

    Neonatal Brain Injury and Neuroanatomy of Memory Processing following Very Preterm Birth in Adulthood: An fMRI Study

    Get PDF
    Altered functional neuroanatomy of high-order cognitive processing has been described in very preterm individuals (born before 33 weeks of gestation; VPT) compared to controls in childhood and adolescence. However, VPT birth may be accompanied by different types of adverse neonatal events and associated brain injury, the severity of which may have differential effects on brain development and subsequent neurodevelopmental outcome. We conducted a functional magnetic resonance imaging (fMRI) study to investigate how differing degrees of neonatal brain injury, detected by neonatal ultrasounds, affect the functional neuroanatomy of memory processing in VPT young adults. We used a verbal paired associates learning task, consisting of four encoding, four cued-recall and four baseline condition blocks. To further investigate whether differences in neural activation between the groups were modulated by structural brain changes, structural MRI data were also collected. We studied 12 VPT young adults with a history of periventricular haemorrhage with associated ventricular dilatation, 17 VPT individuals with a history of uncomplicated periventricular haemorrhage, 12 individuals with normal ultrasonographic findings, and 17 controls. Results of a linear trend analysis demonstrated that during completion of the paired associates learning task right frontal and right parietal brain activation decreased as the severity of neonatal brain injury increased. There were no statistically significant between-group differences in on-line task performance and participants' intelligence quotient (IQ) at assessment. This pattern of differential activation across the groups was observed particularly in the right middle frontal gyrus during encoding and in the right posterior cingulate gyrus during recall. Structural MRI data analysis revealed that grey matter volume in the right superior temporal gyrus, right cerebellum, left middle temporal gyrus, right globus pallidus and right medial frontal gyrus decreased with increasing severity of neonatal brain injury. However, the significant between-group functional neuroanatomical differences were not directly attributable to the detected structural regional differences

    Visuospatial working memory in children and adolescents with 22q11.2 deletion syndrome; an fMRI study

    Get PDF
    22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with a microdeletion of chromosome 22q11. In addition to high rates of neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder, children with 22q11DS have a specific neuropsychological profile with particular deficits in visuospatial and working memory. However, the neurobiological substrate underlying these deficits is poorly understood. We investigated brain function during a visuospatial working memory (SWM) task in eight children with 22q11DS and 13 healthy controls, using fMRI. Both groups showed task-related activation in dorsolateral prefrontal cortex (DLPFC) and bilateral parietal association cortices. Controls activated parietal and occipital regions significantly more than those with 22q11DS but there was no significant between-group difference in DLPFC. In addition, while controls had a significant age-related increase in the activation of posterior brain regions and an age-related decrease in anterior regions, the 22q11DS children showed the opposite pattern. Genetically determined differences in the development of specific brain systems may underpin the cognitive deficits in 22q11DS, and may contribute to the later development of neuropsychiatric disorders

    Thinking about Eating Food Activates Visual Cortex with Reduced Bilateral Cerebellar Activation in Females with Anorexia Nervosa: An fMRI Study

    Get PDF
    Background: Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown. Methods: Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC). Results: Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions. Conclusions: These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    Neural markers of symptomatic improvement during antidepressant therapy in severe depression: subgenual cingulate and visual cortical responses to sad, but not happy, facial stimuli are correlated with changes in symptom score

    No full text
    Resting state activity in the ventral cingulate may be an important neural marker of symptomatic improvement in depression. The number of task related functional magnetic resonance imaging (fMRI) studies correlating blood oxygenation level dependent (BOLD) response with symptomatic improvement is limited and methodologies are still evolving. We measured BOLD responses to sad and happy facial stimuli in 12 severely depressed individuals in the early stages of antidepressant treatment (Time 1) and 12 weeks later (Time 2) using event-related fMRI. We calculated correlations between temporal changes in BOLD response and changes in symptom scores. Most subjects improved markedly by Time 2. At Time 1, depression severity correlated positively with responses to sad stimuli in the right visual cortex, subgenual cingulate, anterior temporal pole and hippocampus and correlated negatively with responses to happy stimuli in left visual cortex and right caudate. Decreases in individual effect sizes of right subgenual cingulate and right visual cortical responses to sad, but not happy, facial stimuli were correlated with decreases in symptom scores. There are contrasting cortical and subcortical responses to sad and happy stimuli in severe depression. Responses to sad stimuli show the strongest correlates of clinical improvement, particularly in the subgenual cingulate
    • …
    corecore