58 research outputs found
Non-invasive vascular assessment using photoplethysmography
Photoplethysmography (PPG) has become widely accepted as a valuable clinical tool
for performing non-invasive biomedical monitoring. The dominant clinical application
of PPG has been pulse oximetry, which uses spectral analysis of the peripheral blood
supply to establish haemoglobin saturation. PPG has also found success in screening for
venous dysfunction, though to a limited degree.
Arterial Disease (AD) is a condition where blood flow in the arteries of the body is
reduced,a condition known as ischaernia. Ischaernia can result in pain in the affected
areas, such as chest pain for an ischearnic heart, but does not always produce symptoms.
The most common form of AD is arteriosclerosis, which affects around 5% of the population over 50 years old. Arteriosclerosis, more commonly known as 'hardening of the arteries' is a condition that results in a gradual thickening, hardening and loss of
elasticity in the walls of the arteries, reducing overall blood flow. This thesis investigates the possibility of employing PPG to perform vascular assessment, specifically arterial assessment, in two ways. PPG based perfusion monitoring may allow identification of ischaernia in the periphery. To further investigate this premise, prospective experimental trials are performed, firstly to assess the viability of PPG based perfusion monitoring and culminating in the development of
a more objective method for determining ABPI using PPG based vascular assessment. A complex interaction between the heart and the connective vasculature, detected at the
measuring site, generates the PPG signal. The haemodynamic properties of the
vasculature will affect the shape of the PPG waveform, characterising the PPG signal
with the properties of the intermediary vasculature. This thesis investigates the
feasibility of deriving quantitative vascular parameters from the PPG signal. A
quantitative approach allows direct identification of pathology, simplifying vascular assessment. Both forward and inverse models are developed in order to investigate this topic. Application of the models in prospective experimental trials with both normal subjects and subjects suffering PVD have shown encouraging results.
It is concluded that the PPG signal contains information on the connective vasculature
of the subject. PPG may be used to perform vascular assessment using either perfusion based techniques, where the magnitude of the PPG signal is of interest, or by directly
assessing the connective vasculature using PPG, where the shape of the PPG signal is of
interest.
it is argued that PPG perfusion based techniques for performing the ABPI diagnosis
protocol can offer greater sensitivity to the onset of PAD, compared to more
conventional methods. It is speculated that the PPG based ABPI diagnosis protocol
could provide enhanced PAD diagnosis, detecting the onset of the disease and allowing a treatmenpt lan to be formed soonert han was possible previously. The determination of quantitative vascular parameters using PPG shape could allow
direct vascular diagnosis, reducing subjectivity due to interpretation. The prospective trials investigating PPG shape analysis concentrated on PVD diagnosis, but it is speculated that quantitative PPG shaped based vascular assessment could be a powerful tool in the diagnosis of many vascular based pathological conditions
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes
We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
The demonstration of a theory-based approach to the design of localized patient safety interventions
Background: There is evidence of unsafe care in healthcare systems globally. Interventions to implement recommended practice often have modest and variable effects. Ideally, selecting and adapting interventions according to local contexts should enhance effects. However, the means by which this can happen is seldom systematic, based on theory, or made transparent. This work aimed to demonstrate the applicability, feasibility, and acceptability of a theoretical domains framework implementation (TDFI) approach for co-designing patient safety interventions.Methods: We worked with three hospitals to support the implementation of evidence-based guidance to reduce the risk of feeding into misplaced nasogastric feeding tubes. Our stepped process, informed by the TDF and key principles from implementation literature, entailed: involving stakeholders; identifying target behaviors; identifying local factors (barriers and levers) affecting behavior change using a TDF-based questionnaire; working with stakeholders to generate specific local strategies to address key barriers; and supporting stakeholders to implement strategies. Exit interviews and audit data collection were undertaken to assess the feasibility and acceptability of this approach.Results: Following audit and discussion, implementation teams for each Trust identified the process of checking the positioning of nasogastric tubes prior to feeding as the key behavior to target. Questionnaire results indicated differences in key barriers between organizations. Focus groups generated innovative, generalizable, and adaptable strategies for overcoming barriers, such as awareness events, screensavers, equipment modifications, and interactive learning resources. Exit interviews identified themes relating to the benefits, challenges, and sustainability of this approach. Time trend audit data were collected for 301 patients over an 18-month period for one Trust, suggesting clinically significant improved use of pH and documentation of practice following the intervention.Conclusions: The TDF is a feasible and acceptable framework to guide the implementation of patient safety interventions. The stepped TDFI approach engages healthcare professionals and facilitates contextualization in identifying the target behavior, eliciting local barriers, and selecting strategies to address those barriers. This approach may be of use to implementation teams and policy makers, although our promising findings confirm the need for a more rigorous evaluation; a balanced block evaluation is currently underway
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
Effect of postural changes on lower limb blood volume, detected with non-invasive photoplethysmography
This paper describes the effect of passive leg raising on blood volume change in the lower limb, using a dual probe photoplethysmography (PPG) system employing a tissue optics model. The normalized AC/DC ratio and DC value are introduced from the model to evaluate the dynamic pulsation and total blood volume changes due to postural effects. The AC and DC components of PPG signals were collected from a passive leg raising protocol. With the leg raised, the normalized AC/DC ratio significantly decreased when supine, while the normalized DC value increased significantly in both supine and reclining positions. The parameters from the stationary leg showed similar but smaller responses. These results demonstrate a local and systemic physiological phenomenon in the lower limb blood volume change caused by postural changes. The normalized AC/DC ratio and DC value derived from the tissue optics model could be applied to assess the blood volume change
Study on blood pulse photoplethysmography signal on toe under different body posture and lower limb height
Under two body-postures (supine and 45° reclining) the blood pulse signal on toe was detected via non-invasive photoplethysmography technique while the lower limb was passively raised in different height. The regulations of blood pulse volume and lower limb height were found and their relation was described through curves in figures
- …