9,132 research outputs found
Cosmological Inflation and the Quantum Measurement Problem
According to cosmological inflation, the inhomogeneities in our universe are
of quantum mechanical origin. This scenario is phenomenologically very
appealing as it solves the puzzles of the standard hot big bang model and
naturally explains why the spectrum of cosmological perturbations is almost
scale invariant. It is also an ideal playground to discuss deep questions among
which is the quantum measurement problem in a cosmological context. Although
the large squeezing of the quantum state of the perturbations and the
phenomenon of decoherence explain many aspects of the quantum to classical
transition, it remains to understand how a specific outcome can be produced in
the early universe, in the absence of any observer. The Continuous Spontaneous
Localization (CSL) approach to quantum mechanics attempts to solve the quantum
measurement question in a general context. In this framework, the wavefunction
collapse is caused by adding new non linear and stochastic terms to the
Schroedinger equation. In this paper, we apply this theory to inflation, which
amounts to solving the CSL parametric oscillator case. We choose the
wavefunction collapse to occur on an eigenstate of the Mukhanov-Sasaki variable
and discuss the corresponding modified Schroedinger equation. Then, we compute
the power spectrum of the perturbations and show that it acquires a universal
shape with two branches, one which remains scale invariant and one with nS=4, a
spectral index in obvious contradiction with the Cosmic Microwave Background
(CMB) anisotropy observations. The requirement that the non-scale invariant
part be outside the observational window puts stringent constraints on the
parameter controlling the deviations from ordinary quantum mechanics...
(Abridged).Comment: References added, minor corrections, conclusions unchange
Ultrafast (but Many-Body) Relaxation in a Low-Density Electron Glass
We present a study of the relaxation dynamics of the photoexcited
conductivity of the impurity states in the low-density electronic glass,
phosphorous-doped silicon Si:P. Using optical pump-terahertz probe spectroscopy
we find strongly temperature and fluence dependent glassy power-law relaxation
occurring over sub-ns time scales. Such behavior is in contrast to the much
longer time scales found in higher electron density glassy systems. We also
find evidence for both multi-particle relaxation mechanisms and/or coupling to
electronic collective modes and a low temperature quantum relaxational regime.Comment: 4 pages, 4 figures, Appeared in Phys. Rev. Let
Doping effects on the electronic and structural properties of CoO2: An LSDA+U study
A systematic LSDA+U study of doping effects on the electronic and structural
properties of single layer CoO2 is presented. Undoped CoO2 is a charge transfer
insulator within LSDA+U and a metal with a high density of states (DOS) at the
Fermi level within LSDA. (CoO2), on the other hand, is a band
insulator with a gap of 2.2 eV. Systems with fractional doping are metals if no
charge orderings are present. Due to the strong interaction between the doped
electron and other correlated Co d electrons, the calculated electronic
structure of (CoO2) depends sensitively on the doping level x. Zone
center optical phonon energies are calculated under the frozen phonon
approximation and are in good agreement with measured values. Softening of the
phonon at doping x ~0.25 seems to indicate a strong electron-phonon
coupling in this system. Possible intemediate spin states of Co ions, Na
ordering, as well as magnetic and charge orderings in this system are also
discussed.Comment: 11 pages, 12 figure
Gauging kinematical and internal symmetry groups for extended systems: the Galilean one-time and two-times harmonic oscillators
The possible external couplings of an extended non-relativistic classical
system are characterized by gauging its maximal dynamical symmetry group at the
center-of-mass. The Galilean one-time and two-times harmonic oscillators are
exploited as models. The following remarkable results are then obtained: 1) a
peculiar form of interaction of the system as a whole with the external gauge
fields; 2) a modification of the dynamical part of the symmetry
transformations, which is needed to take into account the alteration of the
dynamics itself, induced by the {\it gauge} fields. In particular, the
Yang-Mills fields associated to the internal rotations have the effect of
modifying the time derivative of the internal variables in a scheme of minimal
coupling (introduction of an internal covariant derivative); 3) given their
dynamical effect, the Yang-Mills fields associated to the internal rotations
apparently define a sort of Galilean spin connection, while the Yang-Mills
fields associated to the quadrupole momentum and to the internal energy have
the effect of introducing a sort of dynamically induced internal metric in the
relative space.Comment: 32 pages, LaTex using the IOP preprint macro package (ioplppt.sty
available at: http://www.iop.org/). The file is available at:
http://www.fis.unipr.it/papers/1995.html The file is a uuencoded tar gzip
file with the IOP preprint style include
Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives.
We give an update on the worldwide spoligotype database, which now contains 3,319 spoligotype patterns of Mycobacterium tuberculosis in 47 countries, with 259 shared types, i.e., identical spoligotypes shared by two or more patient isolates. The 259 shared types contained a total of 2,779 (84%) of all the isolates. Seven major genetic groups represented 37% of all clustered isolates. Two types (119 and 137) were found almost exclusively in the USA and accounted for 9% of clustered isolates. The remaining 1,517 isolates were scattered into 252 different spoligotypes. This database constitutes a tool for pattern comparison of M. tuberculosis clinical isolates for global epidemiologic studies and phylogenetic purposes
The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems
The magnetisation relaxations of three different types of geometrically
frustrated magnetic systems have been studied with the same experimental
procedures as previously used in spin glasses. The materials investigated are
YMoO (pyrochlore system), SrCrGaO (piled
pairs of Kagom\'e layers) and (HO)Fe(SO)(OH) (jarosite
compound). Despite a very small amount of disorder, all the samples exhibit
many characteristic features of spin glass dynamics below a freezing
temperature , much smaller than their Curie-Weiss temperature .
The ageing properties of their thermoremanent magnetization can be well
accounted for by the same scaling law as in spin glasses, and the values of the
scaling exponents are very close. The effects of temperature variations during
ageing have been specifically investigated. In the pyrochlore and the
bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a
certain temperature re-initializes ageing and the evolution at the new
temperature is the same as if the system were just quenched from above .
However, as the temperature is raised back to , the sample recovers the
state it had previously reached at that temperature. These features are known
in spin glasses as rejuvenation and memory effects. They are clear signatures
of the spin glass dynamics. In the Kagom\'e compound, there is also some
rejuvenation and memory, but much larger temperature changes are needed to
observe the effects. In that sense, the behaviour of this compound is
quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings
of the International Conference on Highly Frustrated Magnetism (HFM2003),
August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France
Renormalization of Non-Commutative Phi^4_4 Field Theory in x Space
In this paper we provide a new proof that the Grosse-Wulkenhaar
non-commutative scalar Phi^4_4 theory is renormalizable to all orders in
perturbation theory, and extend it to more general models with covariant
derivatives. Our proof relies solely on a multiscale analysis in x space. We
think this proof is simpler and could be more adapted to the future study of
these theories (in particular at the non-perturbative or constructive level).Comment: 32 pages, v2: correction of lemmas 3.1 and 3.2 with no consequence on
the main resul
Non-thermal Processes in Black-Hole-Jet Magnetospheres
The environs of supermassive black holes are among the universe's most
extreme phenomena. Understanding the physical processes occurring in the
vicinity of black holes may provide the key to answer a number of fundamental
astrophysical questions including the detectability of strong gravity effects,
the formation and propagation of relativistic jets, the origin of the highest
energy gamma-rays and cosmic-rays, and the nature and evolution of the central
engine in Active Galactic Nuclei (AGN). As a step towards this direction, this
paper reviews some of the progress achieved in the field based on observations
in the very high energy domain. It particularly focuses on non-thermal particle
acceleration and emission processes that may occur in the rotating
magnetospheres originating from accreting, supermassive black hole systems.
Topics covered include direct electric field acceleration in the black hole's
magnetosphere, ultra-high energy cosmic ray production, Blandford-Znajek
mechanism, centrifugal acceleration and magnetic reconnection, along with the
relevant efficiency constraints imposed by interactions with matter, radiation
and fields. By way of application, a detailed discussion of well-known sources
(Sgr A*; Cen A; M87; NGC1399) is presented.Comment: invited review for International Journal of Modern Physics D, 49
pages, 15 figures; minor typos corrected to match published versio
Quantum vibrational resonance in a dual-frequency driven Tietz-Hua quantum well
We investigate the response of a quantum particle in the Tietz-Hua quantum potential driven by biharmonic fields – a low and a very high frequency force. The response is characterized by the occurrence of a maximum in the first-order transition probability amplitude, |s|2 , under the influence of the applied fields. It is shown that in the absence of the high-frequency component of the applied fields, |s|2 shows a distinct sequence of resonances; whereas an increase in the amplitude of the high-frequency field induces minima in |s|2. However, the |s|2 maximum occurs in the low-frequency regime where it may be considered otherwise weak in the presence of a single harmonic force
- …