79 research outputs found

    Transcriptional Regulation of the Intestinal Cancer Stem Cell Phenotype

    Get PDF
    Colorectal cancer (CRC) is one of the most frequent cancers worldwide. Current treatments include surgery and chemotherapy, but disease recurrence occurs frequently. The continuous renewal of intestinal epithelium relies on the presence of intestinal stem cells that are also at the origin of CRC and contribute to therapy resistance and metastatic dissemination. Several nuclear signaling pathways and transcription factors regulate both intestinal cell homeostasis and tumorigenesis. However, the transcriptional events that govern the emergence of aggressive therapy-resistant cancer stem cells are still poorly defined. This review summarizes the relevance of transcription factors in intestinal stem cell biology and their involvement in colon cancer development and drug resistance

    Cytoplasmic LXR expression is an independent marker of poor prognosis for patients with early stage primary breast cancer

    Get PDF
    International audiencePurpose The aim of this study was to investigate the expression of liver X receptors α/β (LXR) in primary breast cancer (BC) tissues and to analyze its correlations with clinicopathological parameters including patient survival. Methods In a well-characterized cohort of 305 primary BC, subcellular distribution of LXR was evaluated by immunohistochemistry. Correlations with clinicopathological characteristics as well as with patient outcome were analyzed. Results LXR was frequently localized in both nuclei and cytoplasms of BC cells, with stronger staining in nuclei. Total and nuclear LXR expression was positively correlated with ER and PR status. Overall survival analysis demonstrated that cytoplasmic LXR was significantly correlated with poor survival and appeared as an independent marker of poor prognosis, in stage I but not in stage II–III tumors Conclusion Altogether, these data suggest that cytoplasmic LXR could be defined as a prognostic marker in early stage primary BC

    The nuclear receptor transcriptional coregulator RIP140

    Get PDF
    The nuclear receptor superfamily comprises ligand-regulated transcription factors that control various developmental and physiological pathways. These receptors share a common modular structure and regulate gene expression through the recruitment of a large set of coregulatory proteins. These transcription cofactors regulate, either positively or negatively, chromatin structure and transcription initiation. One of the first proteins to be identified as a hormone-recruited cofactor was RIP140. Despite its recruitment by agonist-liganded receptors, RIP140 exhibits a strong transcriptional repressive activity which involves several inhibitory domains and different effectors. Interestingly, the RIP140 gene, located on chromosome 21 in humans, is finely regulated at the transcriptional level by various nuclear receptors. In addition, the protein undergoes several post-translational modifications which control its repressive activity. Finally, experiments performed in mice devoid of the RIP140 gene indicate that this transcriptional cofactor is essential for female fertility and energy homeostasis. RIP140 therefore appears to be an important modulator of nuclear receptor activity which could play major roles in physiological processes and hormone-dependent diseases

    Cytoplasmic colocalization of RXRα and PPARγ as an independent negative prognosticator for breast cancer patients

    Get PDF
    Retinoid X receptor α (RXRα) is a nuclear receptor (NR) which functions as the primary heterodimeric partner of other NRs including the peroxisome proliferator-activated receptor γ (PPARγ). We previously reported that, in breast cancers (BC), the subcellular localization of these two receptors was strongly associated with patient prognosis. In the present work, we investigated the prognosis value of the combined cytoplasmic expression of RXRα and PPARγ using a retrospective cohort of 250 BC samples. Patients with tumors expressing both NRs in tumor cell cytoplasm exhibited a significant shorter overall (OS) and disease-free survival (DFS). This was also observed for patients with stage 1 tumors. Cox univariate analysis indicated that patients with tumors coexpressing RXRα and PPARγ in the cytoplasm of tumor cells have a decreased 5 y OS rate. Cytoplasmic co-expression of the two NRs significantly correlated with HER2 positivity and with NCAD and CD133, two markers of tumor aggressiveness. Finally, in Cox multivariate analysis, the co-expression of RXRα and PPARγ in the cytoplasm appeared as an independent OS prognosticator. Altogether, this study demonstrates that the cytoplasmic co-expression of RXRα and PPARγ could be of relevance for clinicians by identifying high-risk BC patients, especially amongst those with early and node-negative disease

    Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors.

    Get PDF
    International audience: Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology

    Prognostic relevance of nuclear receptors in relation to peritumoral inflammation and tumor infiltration by lymphocytes in breast cancer

    Get PDF
    The prognostic impact of tumor-infiltrating lymphocytes (TILs) is intensively investigated in breast cancer (BC). It is already known that triple-negative breast cancer (TNBC), the most aggressive type of BC, has the highest percentage of TILs. In addition, there is an influence of steroid hormone receptor expression (type I nuclear receptors) on TIL subpopulations in breast cancer tissue. The link between type II nuclear receptors and the level of TILs is unclear. Therefore, the aim of this study was to quantify TILs in a panel of 264 sporadic breast cancers and investigate the correlation of TIL levels with type I and II nuclear receptors expression. TIL levels were significantly increased in the subgroup of TNBC. By contrast, they decreased in estrogen (ER)- or progesterone receptor (PR)-positive cases. Moreover, TIL levels were correlated with type II nuclear receptors, including PPARγ, with a significant inverse correlation of the nuclear form (r = −0.727, p 15% showed a significantly decreased overall survival. In addition, peritumoral inflammation was also quantified in BC tissue samples. In our cohort, although the level of peritumoral inflammation was not correlated with OS, it determined the prognostic value of ER, PR, and PPARγ in BC. Altogether, the present study provides a differentiated overview of the relations between nuclear receptor expression, TIL levels, peritumoral inflammation, and prognosis in BC

    Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays.

    Get PDF
    International audienceBenzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hERalpha), and there has been no comprehensive analysis of their potency in a system allowing comparison between hERalpha and hERbeta activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fish origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hERalpha and hERbeta agonists (BP2>THB>BP1) and displayed a stronger activation of hERbeta compared with hERalpha, the opposite effect to that of estradiol (E2). Unlike E2, BPs were more active in rainbow trout ERalpha (rtERalpha) than in hERalpha assay. All four BP derivatives showed anti-androgenic activity (THB>BP2>BP1>BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ERbeta versus ERalpha activation, support further investigation of their role as endocrine disrupters in humans and wildlife

    The RIP140 Gene Is a Transcriptional Target of E2F1

    Get PDF
    RIP140 is a transcriptional coregulator involved in energy homeostasis and ovulation which is controlled at the transcriptional level by several nuclear receptors. We demonstrate here that RIP140 is a novel target gene of the E2F1 transcription factor. Bioinformatics analysis, gel shift assay, and chromatin immunoprecipitation demonstrate that the RIP140 promoter contains bona fide E2F response elements. In transiently transfected MCF-7 breast cancer cells, the RIP140 promoter is transactivated by overexpression of E2F1/DP1. Interestingly, RIP140 mRNA is finely regulated during cell cycle progression (5-fold increase at the G1/S and G2/M transitions). The positive regulation by E2F1 requires sequences located in the proximal region of the promoter (−73/+167), involves Sp1 transcription factors, and undergoes a negative feedback control by RIP140. Finally, we show that E2F1 participates in the induction of RIP140 expression during adipocyte differentiation. Altogether, this work identifies the RIP140 gene as a new transcriptional target of E2F1 which may explain some of the effect of E2F1 in both cancer and metabolic diseases

    Regulation of intestinal homeostasis and tumorigenesis by the transcriptional coregulator RIP140

    No full text
    International audienceColon cancer frequently results from mutations that constitutively activate the Wnt signaling pathway, a major target being the tumor suppressor gene adenomatous polyposis coli (APC). We recently identified the transcription factor RIP140 as a new inducer of APC gene transcription that inhibits colon cancer cell growth and impedes the Wnt signaling pathway by reducing β-catenin activation
    • …
    corecore