945 research outputs found

    On the Properties of Energy Stable Flux Reconstruction Schemes for Implicit Large Eddy Simulation

    Get PDF
    We begin by investigating the stability, order of accuracy, and dispersion and dissipation characteristics of the extended range of energy stable flux reconstruction (E-ESFR) schemes in the context of implicit large eddy simulation (ILES). We proceed to demonstrate that subsets of the E-ESFR schemes are more stable than collocation nodal discontinuous Galerkin methods recovered with the flux reconstruction approach (FRDG) for marginally-resolved ILES simulations of the Taylor-Green vortex. These schemes are shown to have reduced dissipation and dispersion errors relative to FRDG schemes of the same polynomial degree and, simultaneously, have increased CourantFriedrichs-Lewy (CFL) limits. Finally, we simulate turbulent flow over an SD7003 aerofoil using two of the most stable E-ESFR schemes identified by the aforementioned Taylor-Green vortex experiments. Results demonstrate that subsets of E-ESFR schemes appear more stable than the commonly used FRDG method, have increased CFL limits, and are suitable for ILES of complex turbulent flows on unstructured grids

    An extended range of stable-symmetric-conservative Flux Reconstruction correction functions

    Get PDF
    The Flux Reconstruction (FR) approach offers an efficient route to achieving high-order accuracy on unstructured grids. Additionally, FR offers a flexible framework for defining a range of numerical schemes in terms of so-called FR correction functions. Recently, a one-parameter family of FR correction functions were identified that lead to stable schemes for 1D linear advection problems. In this study we develop a procedure for identifying an extended range of stable, symmetric, and conservative FR correction functions. The procedure is applied to identify ranges of such correction functions for various orders of accuracy. Numerical experiments are undertaken, and the results found to be in agreement with the theoretical findings

    An Analysis of Solution Point Coordinates for Flux Reconstruction Schemes on Tetrahedral Elements

    Get PDF
    The flux reconstruction (FR) approach offers an efficient route to high-order accuracy on unstructured grids. In this work we study the effect of solution point placement on the stability and accuracy of FR schemes on tetrahedral grids. To accomplish this we generate a large number of solution point candidates that satisfy various criteria at polynomial orders β„˜=3,4,5β„˜=3,4,5 . We then proceed to assess their properties by using them to solve the non-linear Euler equations on both structured and unstructured meshes. The results demonstrate that the location of the solution points is important in terms of both the stability and accuracy. Across a range of cases it is possible to outperform the solution points of Shunn and Ham for specific problems. However, there appears to be a degree of problem-dependence with regards to the optimal point set, and hence overall it is concluded that the Shunn and Ham points offer a good compromise in terms of practical utility

    Towards green aviation with Python at petascale

    Get PDF
    Accurate simulation of unsteady turbulent flow is critical for improved design of greener aircraft that are quieter and more fuel-efficient. We demonstrate application of PyFR, a Python based computational fluid dynamics solver, to petascale simulation of such flow problems. Rationale behind algorithmic choices, which offer increased levels of accuracy and enable sustained computation at up to 58% of peak DP-FLOP/s on unstruc- tured grids, will be discussed in the context of modern hardware. A range of software innovations will also be detailed, including use of runtime code generation, which enables PyFR to efficiently target multiple platforms, including heterogeneous systems, via a single implemen- tation. Finally, results will be presented from a full- scale simulation of flow over a low-pressure turbine blade cascade, along with weak/strong scaling statistics from the Piz Daint and Titan supercomputers, and performance data demonstrating sustained computation at up to 13.7 DP-PFLOP/s

    Dealiasing techniques for high-order spectral element methods on regular and irregular grids

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.High-order methods are becoming increasingly attractive in both academia and industry, especially in the context of computational fluid dynamics. However, before they can be more widely adopted, issues such as lack of robustness in terms of numerical stability need to be addressed, particularly when treating industrial-type problems where challenging geometries and a wide range of physical scales, typically due to high Reynolds numbers, need to be taken into account. One source of instability is aliasing effects which arise from the nonlinearity of the underlying problem. In this work we detail two dealiasing strategies based on the concept of consistent integration. The first uses a localised approach, which is useful when the nonlinearities only arise in parts of the problem. The second is based on the more traditional approach of using a higher quadrature. The main goal of both dealiasing techniques is to improve the robustness of high order spectral element methods, thereby reducing aliasing-driven instabilities. We demonstrate how these two strategies can be effectively applied to both continuous and discontinuous discretisations, where, in the latter, both volumetric and interface approximations must be considered. We show the key features of each dealiasing technique applied to the scalar conservation law with numerical examples and we highlight the main differences in terms of implementation between continuous and discontinuous spatial discretisations.This work was supported by the Laminar Flow Control Centre funded by Airbus/EADS and EPSRC under grant EP/I037946. We thank Dr. Colin Cotter for helpful discussions and Jean-Eloi Lombard for his assistance in the generation of results and figures for the NACA 0012 simulation. PV acknowledges the Engineering and Physical Sciences Research Council for their support via an Early Career Fellowship (EP/K027379/1). SJS additionally acknowledges Royal Academy of Engineering support under their research chair scheme. Data supporting this publication can be obtained on request from [email protected]

    Isothermal remanent magnetization and the spin dimensionality of spin glasses

    Full text link
    The isothermal remanent magnetization is used to investigate dynamical magnetic properties of spatially three dimensional spin glasses with different spin dimensionality (Ising, XY, Heisenberg). The isothermal remanent magnetization is recorded vs. temperature after intermittent application of a weak magnetic field at a constant temperature ThT_h. We observe that in the case of the Heisenberg spin glasses, the equilibrated spin structure and the direction of the excess moment are recovered at ThT_h. The isothermal remanent magnetization thus reflects the directional character of the Dzyaloshinsky-Moriya interaction present in Heisenberg systems.Comment: tPHL2e style; 7 page, 3 figure

    Surviving sepsis: going beyond the guidelines

    Get PDF
    The Surviving Sepsis Campaign is a global effort to improve the care of patients with severe sepsis and septic shock. The first Surviving Sepsis Campaign Guidelines were published in 2004 with an updated version published in 2008. These guidelines have been endorsed by many professional organizations throughout the world and come regarded as the standard of care for the management of patients with severe sepsis. Unfortunately, most of the recommendations of these guidelines are not evidence-based. Furthermore, the major components of the 6-hour bundle are based on a single-center study whose validity has been recently under increasing scrutiny. This paper reviews the validity of the Surviving Sepsis Campaign 6-hour bundle and provides a more evidence-based approach to the initial resuscitation of patients with severe sepsis
    • …
    corecore